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Summary in Portuguese 
Neste relatório de tese descreve-se uma nova metodologia para depuração 
(“debugging”) de programas Prolog, assente em informação declarativa prestada 
pelo utilizador.  

Este trabalho constitui um melhoramento às abordagens anteriores no campo de 
depuração declarativa, a vários níveis: diminuição substancial do número necessário 
de perguntas ao utilizador; primeiro tratamento específico para impurezas extra-
lógicas, como o operador de corte e os efeitos colaterais internos; tratamento 
uniforme para todos os tipos de erro, excepto a não-terminação; e um protótipo 
experimental incorporando estes melhoramentos. 

Nota: no apêndice A inclui-se um resumo em Português bastante mais alargado, de 
acordo com o regulamento da FCT/UNL. 
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Abstract 
This thesis describes a new approach to declarative debugging (error diagnosis) of 
logic programs. The main contributions are:  

• “Declarative source debugging”, a new approach requiring less queries from the 
user. 

• Improved algorithms for classical “declarative execution debugging”. 

• Support for Prolog impurities, such as cuts and side-effects. 

• The use of suspect trees, allowing uniform treatment of all considered bug types. 

• More extensive use of the available user knowledge. 

• An approach for debugging meta-interpreted and pre-processed programs. 

• An implementation architecture designed for large program computations, but not 
tested on large programs. 

• An experimental prototype incorporating these improvements.  

• An application of the debugging framework to the problem of knowledge base 
updating. 

The concepts and methods are layered according to the programming language: 
from pure Horn logic (normal) programs to full Prolog. 
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Notation 
We use logbX to denote the logarithm of X for power base b, and simply log X for 
log2X.  

The main concepts and definitions are listed in the index at the end. 
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Preambule 

This thesis has four parts. The first five chapters deal with a new theoretic 
framework for declarative Prolog debugging diagnosis. The next part describes a 
prototype implementation of the theory, a Prolog debugging environment. The third 
part relates the application of the debugging technology to the problem of 
knowledge base updating, as an example of possible cross-fertilizations with other 
research fields. There's finally a conclusion, summarizing the main achievements 
and open problems.  

The reader is expected to have basic notions about Prolog and logic programming, 
say as contained in [17]. Some basic experience with a conventional Prolog tracer 
debugger would also help. The ideal reader will also have read chapters 1-3 of [83], 
a main reference for this work.  

Here's a table for those in a hurry, pointing possible reading paths: 
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Who you are Start at... ... and continue with 

Prolog User Given the experimental character of the 

implementation, your only motivation 

should be be to get an implementor 

look into this, so that later you may 

become a user; cf. “Environment 

implementor ” 

 

Environment implementor  Chapter 6, which describes the 

HyperTracer concept prototype. It also 

provides an overview of the main 

technical aspects.   

Chapter 7 analyses possibilities 

for an efficient implementation.  

Theortician Chapter 1 includes a section on the 

main results of the thesis, with pointers 

for other parts of the text. 

Follow the most provocative 

claim in chapter 1. 

Table 1: Reading paths 

The present work originated several reports and publications during 1987-90, 
namely [67], [66], [68], [69], [13] and [71]. The associated implementation work 
provided the debugger prototypes for the ESPRIT ALPES project, as well as for a 
R&D contract with Apple Computer. 
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1. Context 

We start with an abridged historical perspective of previous work on Prolog 
debugging. Following is a summary of needs, and a summary of the main 
accomplishments of this work regarding those needs. 

The impatient reader may prefer to take a quick tour at chapter 6 before continuing, 
which describes our experimental prototype, and in particular to the section 
“Example debugging session”, which gives a flavour of a debugger based on this 
work. 

1.1. Some history  
Prolog started [80] with no support for debugging. The first widely used efficient 
Prolog implementation [73] had only a simple trace/notrace facility, tracing all 
Prolog predicate calls. Later Byrd [11] added to it the first Prolog specific tracer.  

Byrd's main contribution was the introduction of the 4-port box model of execution. 
Whereas deterministic language procedure calls can be represented with 2-port 
boxes, for CALL and EXIT ports, Prolog needs 4: 

CALL

FAIL

EXIT

REDO

G G' G'' …

 

Figure 1.1: 4-Port Box 

For each solution to goal G, execution flow goes through the EXIT port. On 
backtracking for more solutions the REDO port is used, and when no more solutions 
are available, execution for the predicate terminates through the FAIL port.  
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Byrd introduced this box model, and developed a tracer providing features alike 
those present in debuggers for other languages, but adapted to deal with the non-
deterministic nature of Prolog execution: commands for “creeping” instead of 
“single-stepping”, “skip” instead of “jump over”, “spy-points” instead of 
“breakpoints”, and so on. Even today, most commercial Prolog tracers are based on 
these features. 

Following Byrd's work many refinements were developed during the 1980s: 
additional features, more ergonomic interfaces, providing more detail, etc. Some of 
these will be overviewed in the last chapter. 

The tracer approach satisfies the basic requisites of a Prolog debugging tool. But 
debugging practice did not deviate much from that of debugging programs in 
deterministic languages, with the added trouble of dealing with more complex 
execution traces, due to Prolog's nondeterminism. We might visualize a tracing 
session as follows, with the arrows denoting the user´s whereabouts within the 
execution trace:  

Bug found ?

Bug manifestation at the top goal

 

Figure 1.2: Tracing 

In summary, tracers do not capitalize on Prolog's specific features, such as its clear 
declarative semantics, but they mirror Prolog's idiosyncrasies.  



Miguel Calejo 

 

6 

This situation was perceived by Ehud Shapiro. The first part of his landmark PhD 
thesis [83] introduced Algorithmic (or Declarative) bug diagnosis1. His basic idea 
was to use an oracle, an entity with knowledge about the intended declarative 
semantics of a program, namely its author, so that with declarative knowledge alone 
a debugger (or diagnoser) could pinpoint a bug in the program: 

program + oracle knowledge ∅ bug instance 

Whereas in tracers the user navigates about the execution trace using operational 
commands, entirely on his own initiative, with a declarative debugger he navigates 
according to the algorithmic criteria of the debugger, based on declarative 
knowledge expressed by the oracle. Because navigation is now based on declarative 
information, and conducted in a systematic and optimized way, a bug is guaranteed 
to be found, typically with less user interaction and effort. 

In practical terms, a debugger implementing this approach might originate a 
debugging session as follows: 

Bug manifestation at the top goal

Bug found.

 

Figure 1.3: Algorithmic Debugging 

                                                

1The second part deals with the bug correction problem, also an important contribution to the 

artificial intelligence learning field, but of less interest to us 
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The declarative debugging approach brought hope for better debugging tools, and 
originated subsequent research work, which we later overview (cf. chapter 9) and 
compare to our framework.  

The present thesis continues this trend, extending the programming language 
acceptable for declarative debugging, introducing new and improved debugging 
algorithms, and coming up with a prototype implementation integrating also some 
tracer features. 

1.2. Summary of field needs and thesis's main 
results 
At the end (cf. “Conclusion” chapter) we'll overview work by other authors, 
positioning it in terms of our own framework. Following is a summary of problems 
and needs motivated by the previous work on declarative debugging, together with 
our own contributions to them: 

• Declarative debugging has focused exclusively on the search for bug instances 
in computation traces, rather than bugs in the program source.  

We present the first “declarative source debugging” algorithms, and show 
how they require less queries to find a diagnosis(cf. chapter 5). 

 • The algorithms used are suboptimal regarding the number of queries for 
searching bug instances1.  

We present algorithms parametrized by the level of optimality desired, for 
all bug types (such as Generalized Divide&Query(N) - cf. chapter 2). 

• Existing diagnosis algorithms may require program computations different from 
the original one producing the bug manifestation, hence leading to nontermination 
problems. 

                                                

1 Some are optimal for binary or balanced suspect trees (as in [83]; others require a different type of 

oracle queries (equivalent to queries about nonatomic goals) to “transform” the suspect tree into a 

binary tree [76]. In both cases, only the wrong solution problem was considered. 



Miguel Calejo 

 

8 

Our algorithms work on a frozen (“post-mortem”) representation of the 
computation trace, thus avoiding (debugger-originated) differing 
recomputations, and are guaranteed to terminate if the original computation 
did (cf. chapter 2, section “Finding Bug Instances”, subsection “The basic 
algorithm”). 

• Oracle information is not fully used. 

Our debugging framework uses subsumption among oracle statements for 
planning the next queries, and not just when the user is about to answer 
them (cf. subsections “Refining suspect sets with the oracle” and “The bug 
instance search tree”, chapter 2) 

• Prolog's impure features (namely cuts and side-effects) are at most tolerated but 
ignored, i.e. they're not specifically supported by declarative diagnosis algorithms.  

We present the first declarative debugging methods for programs contaning 
cuts1 and output side-effects; we give a partial solution for the problem of 
programs using internal database side-effects (cf. chapter 4). 

• There are no methods available for finding bugs in interpreted or preprocessed 
programs. 

We present methods for debugging such programs (cf. chapter 3). 

• All authors use different algorithms for different bug types, rather than uniform 
polymorphic algorithms. 

We use a uniform framework, based on the notions of suspect tree and 
suspect set. Our algorithms can be used for all bug types other than non-
termination, by working with different suspect types (cf. Theory Summary 
section on chapter 6). This reflects into a uniform implementation (cf. 
chapter 7). 

• Most implementation designs are limited to toy programs2. 

                                                

1 Our basic approach to cuts, mentioned in [66] and implemented in a prototype demonstrated to the 

referees of the ALPES (ESPRIT P-973) project in September 1987, is in essence identical to that of 

[40], which was developed independently. 

2 With the exception of [76], but whose restrictions make it uninteresting in most settings (cf. 

previous footnote on the nonoptimality of previous algorithms). 
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We introduce an architecture based on “virtual trace storage”, a mixed 
storage/recomputation technique to minimize space and time costs1. 
However our experimental implementation was done at a high level, in 
Prolog, and so currently only toy programs are tackled by it (cf. chapter 7). 

• Existing debuggers have modal interfaces2, forcing the user into a rigid mode of 
question/answer interaction. 

Our prototype provides a user-friendly graphical interface, allowing a 
mixture of declarative debugging and execution browsing3; several top goals 
can be examined at once, with different algorithms being applied arbitrarily 
and incrementaly, under user control (cf. chapter 6). 

• There are no distributed declarative debugging systems. Declarative debugging 
of concurrent languages is currently done via sequencial interpreters.  

We didn't address this problem. 

• Declarative debugging shares similarities with other fields, suggesting cross-
fertilization. 

We established a conceptual and practical bridge with the field of 
knowledge base updating (cf. chapter 8). 

As a global accomplishment, we believe to have managed to integrate all the 
contributions above in an elegant way. Wrong solutions, incomplete solution sets, 
inadmissible goal calls and wrong output segments are all treated with the same 
diagnosis algorithms, for any logic programming language resorting to SLDNF 
operational semantics. Logic programming language impurities reflect simply into 
additional bug types or extended suspect sets. All this can be appreciated at a glance 
in the “Theory Summary” section, chapter 6. 

                                                

1 Our approach can be seen as a generalization of [76]. 

2 As opposed to non-modal interfaces, where the user has more freedom to interact and to pick 

interface objects to act upon, as in standard “Graphical User Interfaces” (Apple Macintosh, 

Microsoft Windows, Motif, NeXTStep, etc.). 

3 This approach was presented in [66], as a design solution for the ALPES debugger. Another system 

which also advocates an hybrid style of interaction is the Transparent Prolog Machine [34], 

developed independently. 
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The “HyperTracer” prototype reflects this integrated and uniform character.  

On the down side, it's only fair to refer the current unefficiency of the HyperTracer, 
which is due to an experimental implementation and not to its design, as discussed 
in the “Implementation Issues” chapter. We'd certainly like it to already be an 
usable tool, but unfortunatly the manpower for this work was finite. There's still 
work to be done after this thesis ! 
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2. Basic framework 

In this chapter we present the basic framework1 to define and solve the following 
problem. Given:  

• A consistent oracle theory, extensible on demand and interactively by the user. 

• A normal logic program, with implicit program completion, and using the 
Negation As Failure rule [49]. 

• A finite and non-floundering SLDNF computation [ib.], implementing an 
exhaustive search for solutions, and producing an incorrect result. 

Find:  

• An incorrect program component instance, a diagnosis, without additional 
(different) program computations, and minimizing the cost of querying the user. 

Essentially, the framework defined in this chapter improves the treatment for 
normal programs by other authors, and lays down the foundations for the next 
chapters. We come up with the notion of suspect tree, the cornerstone of our 
approach, and several new algorithms based on it.  

                                                

1 More extended than the original version presented in [68].  
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2.1. Definitions 
In this section we'll define the theoretic concepts needed for declarative debugging. 
In addition to the usual concepts related to the buggy logic program, we also need a 
theory about the program and its computations, to be later implemented as a logic 
program, and on which the debugging algorithms will be based. To this we call the 
(meta-level) debugger theory, as opposed to the (object-level) program. We'll use 
the debugger theory concepts as part of our notation, and will associate condition 
statements in the text to truth in terms of the debugger theory.  

An interesting point to note is that the knowledge expressed in the debugger theory 
and the debugger algorithms are cleanly separated, rather than amalgamated as other 
authors have in practice done for their debugger implementations. Conceptually the 
present approach corresponds essentially to viewing a declarative debugger as a 
“post-mortem” procedure, to be applied after a computation has terminated, rather 
than a runtime interpreter/debugger. 

2.1.1. Programs 

A program is a set of predicate definitions.  

A predicate definition is a set of zero or more clauses, plus one predicate 
completion rule. All predicate symbols have a predicate definition. A clause is an 
implication of the form H <- B, where H is an atom, the clause head, and B is a 
conjuntion of positive and/or negative literals, the clause body.  

Clauses with empty body are facts, and the others are rules. The predicate 
completion rule is syntactically implicit, and means “this predicate has no more 
clauses”. Clauses and completion rules are program components, and have unique 
names. We can say either that a program is a set of predicate definitions, or a set of 
clauses plus a completion rule per predicate symbol.  

For each clause H<-B in the program there's a correspondent fact clause(H,B,Ref) 
in the debugger theory, where Ref is the clause name. For each predicate definition 
for predicate symbol P in the program, or equivalently for each completion rule, 
there's a correspondent fact predicate_definition(P,Ref), where Ref is the 
completion rule name. Program clause variables are represented as unique constants 
in the debugging theory. 
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2.1.2. Computations 

Program components are used to build SLDNF trees by an interpreter, at least 
conceptually. Most interpreters do so in a much more efficient way than the 
following definitions suggest. Typically they follow a strict search strategy, so that 
most of the SLDNF structure remains implicit. 

A goal is a conjunction of positive and/or negative literals. An atomic goal is a 
single positive literal (or atom). A clause instance is a copy of a program clause 
with an applied substitution. For convenience, we'll assume that all clause instances 
have different names, even if they're syntactically similar. 

The SLDNF-tree for a goal G and an implicit program, denoted by SLDNF(G), is 
defined as follows, based on [49] but with some changes, to represent explicitly the 
derivations for negated subgoals. 

• Each node contains a goal, and a selected literal in it. 

• The root node is G. 

• Tree links can be of one of two types: clause match links or subderivation links. 
Clause match links are labelled with a substitution; subderivation links have no 
label. 

• A node with the empty goal has no children. 

• Let G1…Gi…Gn be a non-empty node and Gi, the selected literal, a positive 
literal or atom. Then the node has a child ( G1 … Gi1 … Gim … Gn )θi for each 
instance of a program clause H<-Gi1…Gim, obtained by applying the substitution 
θi such that Gi and H are unifiable with mgu θi. Each such child node is linked to 
the parent node by a clause match link, labelled with <“name of H<-Gi1…Gim ”, 
θi>. 

• Let G1…Gi…Gn be a non-empty goal node and Gi, the selected literal, a ground 
negative literal ~A. Then the node has a child, the root of SLDNF(A), connected by 
a subderivation link, and it may or not have another child: 

•• If SLDNF(A) has a solution path (cf. below), the node has no more 
children. 

•• Otherwise the node also has a child G1 … Gi-1 … Gi+1 … Gn, 
linked by a clause match link labelled with <“”, ε>, where “” signifies the 
absence of a clause name. 
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The main difference regarding the conventional definitions of SLDNF trees lies in 
the treatment of negative literals: failed subderivations have a representation in the 
tree, for debugging's sake as will become clear later. 

Example Take the following program, producing top goal solution a: 

a :- b, ~c.  

b. c :- ~d. c:-e.  d. 

The SLDNF-tree will look as follows: 

Subderivation

Subderivation

 

Figure 2.1: A SLDNF-Tree 

→ 

A goal call is a selected atomic goal, in some node in a SLDNF-tree. The goal call 
binding is the composition of substitutions accumulated from the root down to the 
node of the SLDNF-tree where the goal call is. Notice that it can involve variables 
which are not present in the goal call literal. 

We now define an important relation among nodes, “under”, which specifies the 
notion of composition of independent subcomputations. Consider a SLDNF-tree, 
and 2 goal calls T and G in it. G is under T iff either: 

• G is a computed instance1 of an atomic goal in the clause body of a clause 
matching T. 

                                                

1An instance obtained via the SLDNF construction process above. 
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• G' is a computed instance of an atomic goal in the clause body of a clause 
matching T, and G is under G'. 

• ~G' is a computed instance of a negative literal in the clause body of a clause 
matching T, and G is under G'. 

Notice that if G is under T, then G is a descendent of T in the SLDNF-tree, but the 
opposite does not hold: in general T has descendents in the SLDNF-tree which are 
not under it. 

Example Take the following program, and top goal a: 

a:-b,c. b:-e.  e. c. 

The SLDNF-tree is: 

 

Figure 2.2: SLDNF-Tree illustrating under 

Goal call e is under b, but c is not. → 

Take a SLDNF-tree, and a node G1…Gi…Gn, with selected goal Gi. A solution 
path for goal Gi is a path of clause instance links in the tree, starting at the node and 
ending at the first node below it which does not contain goals under Gi (if such a 
node exists, otherwise there's no solution path)1. 

Let G be a goal call in some SLDNF-tree. A goal solution for G is the atom instance 
Gθ, where θ is the sequence of substitutions along a solution path for goal G. The 
goal solution binding for Gθ is the substitution accumulated from the root of the 
SLDNF-tree until the end of the solution path. Notice that it is at least as specific as 
θ: it is {goal call binding} ≈ θ. 

                                                

1 Notice that this definition abstracts from the execution order of goals. I.e. Prolog's left-to-right 

strategy is not assumed. 
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A predicate instance is a pair <G,P>, where P is a predicate definition for atomic 
goal G. It denotes the subset of clauses of P that match G.  

A predicate body instance is the set of all goal calls in clause bodies of a predicate 
instance, resulting from computed instances of their literals. Sometimes we'll also 
use this concept regarding negative literals, meaning negative literals ~Bi in which 
Bi is in the predicate body instance. 

Notice that a literal in a clause instance may originate multiple goal calls in a 
predicate body instance. 

Example Consider the following program, and top goal a(a1). 

a(a1):- b(X), c(X). b(1).  b(2). 

a(a2). 

The predicate instance of predicate a/1 for goal a(a1) is set comprising the first 
clause. The predicate body instance for goal a(a1) is the set of goal calls {b(X), c(1), 
c(2)}.→ 

2.1.3. Goal behaviors 

A goal behavior expresses the result of a program computation for an atomic goal, 
and is obtained from a SLDNF tree containing it. It consists in a goal call in the tree 
plus its solution set, and has a representation in the debugger theory, as a set of 
facts. For each atomic goal, the debugger theory contains the following facts: 

• goal(GN,G,Cref,Pref), where G is an atomic goal with unique name GN, occurring 
in a parent clause named Cref and matching (or attempting to match) predicate 
instance named Pref; its (object-level) variables are existentially quantified; 

• solution(GN,N,S,Cref), for each solution S, uniquely named N, obtained from the 
head of matching clause instance (with S's binding) named Cref, for goal call named 
GN; its (object-level) variables are universally quantified, and reflect the goal 
solution binding according to the definition in the previous section. 



A Framework for Declarative Prolog Debugging 
 

17 

Given a goal behavior, a goal behavior facet (or goal facet) is some part of it - 
either a solution or the whole solution set, and in any case having a unique name1- 
and corresponds to a tuple or tuple set in the 'solution' relation above. We'll 
represent it by its name, and sometimes use a functional notation: 

• call(G) denotes the name of goal G. 

• solution(G) denotes the name of some solution for goal G. 

• solution_set(G) denotes the name of the solution set for goal G. 

• solution_set∅(G) denotes the name of the solution set for G, when it is empty; it's 
a particular case of the previous one, and just a notational convenience. 

We say a program component instance CI matches a goal behavior facet F if: 

• F is a solution, and CI the clause instance producing it (i.e., labelling the topmost 
link in the solution path), with the solution binding. 

• F is a solution set for goal G, and CI is the predicate instance for G. 

2.1.4. Core oracle theory 

An oracle is an entity with knowledge about the intended semantics of the program: 
it characterizes the intended program (composed of its intended predicates) rather 
than the present program, regarding the correctness or incorrectness of specific 
program computation results. Independently of the type of semantics involved, its 
knowledge is made partially explicit as a relation of “correct”/“incorrect” assertions, 
and part of the debugger theory. The oracle has the ability to make it as explicit as 
required by a debugging algorithm, by adding tuples to the relation.  

In addition to those assertions, the oracle may also contain assertions about the 
correctness of some program components, which encapsulate knowledge about the 
trusted parts of a program, such as system predicates for example. Such assertions 
form a relation correct_component(Program component name). We'll return to it in 
the next section, and for now concentrate just on “oracle statements”. 

                                                

1Unique names can be easily provided by the interpreter implementation, for example by using 

<execution timestamp , process> pairs. 
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Oracle statements are tuples for the predicate relation o_s(Status,F). The first 
argument is either of 'correct' or 'incorrect', and the second is a goal behavior facet 
name. Each oracle statement classifies a goal facet as correct or incorrect, 
independently from other goals (i.e., the correctness of a goal behavior facet is 
strictly independent of that of other facets) and also of any operational aspect (e.g. 
regarding execution order among goals, or any other external factors). In other 
words, oracle statements are entirely context-free, and express solely the desired 
declarative semantics of the program. 

Typically the oracle is based on user statements (cf. below) given by the author of 
the program, via declarative yes/no answers: he is presented with one or more goal 
behavior facets within a complete goal behavior, and is asked whether it is correct 
or not.  

Following is a table with the possible cases for the goal behavior facet types, and 
their meaning, according to the intended program semantics known by the oracle.  

 

Type Status Meaning 

solution correct solution is correct (even though other solutions may be 
missing) 

solution incorrect solution is incorrect (even though other solutions may 
be missing) 

solution set correct all solutions for the goal are correct and none is missing 

solution set incorrect the solutions produced for the goal are correct, but some 
are missing 

Table 2.1: Basic oracle framework 

Notice that a goal can have both an incorrect solution and a missing solution in its 
behavior. In such cases it is arbitrarily assumed that the existence of an incorrect 
solution is interesting for debugging, but the incorrectness (i.e., incompleteness) of 
the solution set is not; the motivation for this choice is the fact that incorrect 
solutions are easier to diagnose than incomplete solution sets, at least for programs 
without negation, as will be seen later (cf. definition of suspect trees below). 
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The oracle theory1 is made of the oracle statement and user statement relations, plus 
some auxiliary formulas (cf. below). It has a generic core and a customized part, 
which depends on the logic programming dialect. 

The oracle must always be consistent regarding the single2 following oracle theory 
integrity constraint:  

¬ (o_s(incorrect,F) � o_s(correct,F)).  

An user statement is represented as a tuple for the relation u_s(Status,F), and 
reflects into an oracle statement via the following clause: 

u_s(Status,F) ⇒ o_s(Status,F) 

We distinguish the two statement relations (o_s and u_s) to emphasize their 
different justifications (debugger and user knowledge, respectively). 

Given the meaning associated to statements about correct solution sets, the 
following rule is also present - any statement about the completeness of the solution 
set implies the correctness of each individual solution: 

o_s(_,solution_set(G)) � solution(G,S,_,_) ⇒ o_s(correct, S). 

This has just the practical consequence of forcing the human interface of the 
debugger to restrict some user statements. 

If all solutions are correct and the solution set is not incomplete, the solution set is 
correct: 

[solution(GN,S,_,_) ⇒ o_s(correct,S)] � ¬ o_s( incorrect, solution_set(GN))  
⇒ o_s( correct, solution_set(GN) ). 

Oracle statements refer (unique) goal behavior facet names, and therefore apply to a 
single computational entity. Reuse of user statements can be achieved, when a goal 
facet subsumes another, using the following oracle rules: 

o_s(correct,F1) � subsumed_facet(F1,F2) ⇒ o_s(correct,F2). 

o_s( incorrect, F1 ) � subsumed_facet( F2, F1 ) ⇒ o_s(incorrect, F2 ). 

                                                

1For the sake of clarity we'll use loose first order logic notation, with implicit universal quantifiers, 

and underscores representing universal “don't care” variables. 

2 We'll introduce another constraint after we define bug instances in the next sections. 
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subsumed_facet(F1,F2) holds iff F1 is at least as general as F2, in the sense that the 
two previous rules would be valid were user statements available about F1 and F2. 
This concept is akeen to logical subsumption, and it also embodies as a particular 
case the obvious idea of “remembering previous user answers” found in other 
declarative debuggers.  

The subsumed_facet predicate depends on the semantics of the logic programming 
dialect, in particular of its level of logical “purity” (use of side-effects, etc.), and 
will be defined in the customized part of the oracle theory. 

Example Take two goal solutions computed from the same program, p(1,X), 
p(1,a), the first of which is considered correct by the oracle. Assuming that the 
statement was made considering X with an implicit universal quantifier, as would 
be the case in a situation involving pure logic programs, then p(1,a) can be 
considered correct, even without asking the user. → 

2.1.5. Customized Oracle Theory  

In addition to the core oracle theory, additional rules must be considered for each 
specific logic programming language feature.  

Given the negation by failure rule, the oracle theory also contains the following 
rules, in the right column of the next table. Each corresponds to the basic logic 
equality on the left column.  

∀¬G � ¬∃G o_s(correct,solution(~G))�o_s(correct,solution_set∅(G)) 

∃¬G � ¬∀G o_s(incorrect,solution_set∅(~G))�o_s(incorrect,solution(G)) 

¬∀¬G � ∃G  o_s(incorrect,solution(~G))�o_s(incorrect,solution_set∅(G)) 

¬∃¬G � ∀G o_s(correct,solution_set∅(~G))�o_s(correct,solution(G)) 

Table 2.2: Embedding Negation As Failure 

For example, the first line reflects the fact that a negated goal solution (with an 
implicit universal quantifier) is valid iff the same (non-negated) goal solution literal 
finitely fails, given the negation as failure rule. We may therefore forego oracle 
statements about negated literals, and prompt the user only to obtain statements 
about atomic goals. 
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For normal programs, without the impurities found in most practical logical 
programs, it is possible to define a subsumption relation between goal solutions1: 

subsumed_facet(solution(S1),solution(S2)) �  “S1 subsumes S2”. 

S1 subsumes S2 iff, modulo variable renaming, S2 is equal to S1 or it is an instance 
of S1.  

Again for normal programs, there's a particular case where identical facets provide 
some correctness information directly. If a goal has a solution subsuming itself (i.e., 
syntactically identical), then its solution set can't be incomplete: all possibly missing 
solutions are subsumed by the existing one. However it may (by subsumption) 
contain incorrect solutions. 

goal(GN,_,_,_) � solution(GN,SN,_,_) � subsumed_facet(SN,GN) ⇒  
¬ o_s( incorrect, solution_set(GN)). 

Whenever this rule applies, it is not necessary to obtain a user statement about the 
completeness of a goal solution set in order to conclude that it is correct. 
Information about correctness of individual solutions is enough. 

Finally, if a correct program specification is available it can be included in the 
oracle theory, as suggested by [31], and later implemented by [25]. This can be 
done in the form of additional oracle rules, conditioning the relation o_s.  

A specification can also relate directly to program components, rather than to 
computation results; for example “the clauses for predicate p are correct, but those 
of predicates q and r may or not be so”. This knowledge is represented in the 
relation correct_component(PC) referred in the previous section, PC being a name 
of a program component known for sure to be correct. It should be stressed that this 
relation does not directly state anything about the correctness of computation 
results. 

The correct_component relation introduces the need for an additional constraint on 
the oracle theory, which will be presented after defining bug instances in the next 
section. 

                                                

1It seems pointless to define a subsumption relation for solution sets: there seems to be no correlation 

between subsumption among goal calls and subsumption among solutions in their solution sets, due 

to use of negation as failure. 
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2.1.6. Bugs and their relatives 

A bug manifestation is a goal behavior facet for which there's an oracle statement 
classifying it as incorrect. A program is considered buggy iff it has a bug 
manifestation. Since we're assuming the computation to be finite and 
nonfloundering, the only possible bug manifestations are incorrect solutions and 
incorrect (incomplete) solution sets.  

An incorrect solution is also called a wrong solution, and an incorrect solution set a 
missing solution - as a reference to the solution missing in the set. 

Intuitively, a bug instance is an instance of a program component in the SLDNF 
tree, such that it produces a bug manifestation independently of other bug 
manifestations. We'll define the two cases to be considered: wrong clause instance 
and incomplete predicate instance. 

A wrong clause instance expresses the notion of buggy clause. Let H be a goal 
solution, matching clause instance H<-B1…Bn. This is a wrong clause instance if: 
o_s( incorrect, solution(H) ) is true, and for each literal Bi in the body , 
o_s(correct,solution(Bi)) is true. 

An incomplete predicate instance expresses the notion of buggy predicate 
completion rule, or of a predicate whose clauses fail to produce an additional 
solution, without any suspicion being assigned to their subgoals. It is a predicate 
instance <G,P>, for which o_s( incorrect, solution_set(G) ), and such that for all 
goal calls in its predicate body instance, named Gi: 

• if Gi is an atomic goal, then o_s(correct,solution_set(Gi)) is true 

• if ~Gi is a negative literal with empty solution set, then o_s( correct, 
solution_set∅(~Gi) ) is true 

• (the case for successful negative literals is irrelevant) 

The need to refer to correctness of whole subgoal behaviors, by referring to the 
correctness of their solution sets, and not just to their completeness, comes from 
those cases where wrong solution bindings cause a legitimate failure in a brother 
goal, but an incorrect failure in the father goal. This is taken care of in the first case 
above, via the core oracle theory's definition of “correct solution set” statements. 

Example Take the following program, and top goal foo(1,Y), with an 
(incomplete) empty solution set.  
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foo(X,Y) :- q(Y), p(X,Y). 

p(1,a). 

q(b). % wrong clause 

Consider that q(b) is incorrect, p(1,a) is correct, and goal p(1,b) has a complete 
(although empty) solution set. The guilt for the missing top goal solution should 
therefore be attributed to clause q(b), and not to the predicate definition foo/2. → 

The ommission of the check of correctness for succeeded negative literals, as 
specified in the last case in the definition above, is acceptable because negation as 
failure produces no bindings, and therefore it is irrelevant to check if its success is 
correct: were it incorrect, it would not be the cause for the missing solution in the 
predicate. 

Example Consider the program 

foo(X,Y) :- ~a(X),b(Y).   

Assume that top goal foo fails erroneously, but that ~a(X) succeeded with a 
wrong solution, a(X) having failed with a missing solution. But if goal a(X) 
succeeded, foo would continue to fail; and it is not possible to change the binding  
produced by ~a(X), because it is empty. →Finally, a bug is a program component 
with a bug instance: a wrong clause instance is an instance of a wrong clause, and 
an incomplete predicate instance is an instance of an incomplete predicate. 

2.1.7. An additional oracle constraint 

Given the above definitions of bug, and the fact that the oracle may contain a 
relation correct_component(PC), stating that some program components are 
guaranteed to be correct, it's important to ensure the compatibility between both, 
with an additional oracle constraint simply formulated as follows: A program 
component declared correct can not be a bug. Or any computed instance of a 
program component declared correct can not be a bug instance. 

This constraint could be stated more formally, by caracterizing the refutation of the 
definition of bug instance, in terms of oracle statements. Intuitively, it simply means 
that if the head of a correct program component instance is incorrect there must be 
an incorrect body literal, and if all body literals are correct the head must be correct.  

Since the debugging methods below cannot violate it, because they don't consider 
correct program components as suspects, its motivation is just to serve as 
conceptual ground for the practical “inconsistent oracle” situation discussed in the 
last section. 
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2.2. Suspect trees, sets and their properties 
We'll now prepare to follow the traditional diagnosis approach: start with a set of 
suspects, and eventually end up with a singleton, guaranteed to be a bug instance. 

2.2.1. Definition 

The suspect tree for a goal behavior facet F, ST(F), is based on the SLDNF-tree of 
the computation producing F, which is not necessarily at its root, and is recursively 
defined as follows: 

• Each node has the name of a goal behavior facet, and is labeled with a program 
component instance 

• The root is the node F 

• Each solution facet node S is labeled with the clause instance matching it and, for 
each literal Bi in the clause instance body, it has a child as follows: 

•• if Bi is an atom, ST( solution(Bi) ) 

•• if Bi is a negative literal ~G, ST( solution_set∅(G) ) 

• Each solution set facet node is labeled with the predicate instance matching it (cf. 
definition of “match” above in section “Goal Behaviors”), and, for each literal Bi in 
its predicate instance body, i.e. all goal calls immediately under it (cf. definition of 
“under“ above in section “Computations”), it has one or more children as follows: 

•• if Bi is an atom, a child ST( solution_set(Bi) ) 

•• if Bi is a failed negative literal ~G, a child ST( solution(G') ) for each 
solution G' of G 

Example Consider the following program, with missing solution 
subset([2],[1,2]), taken from [49], page 127. 

subset(X,Y) :- ~ (f_member(Z,X), ~ f_member(Z,Y) ). 

f_member(X,[X|Y]). 

f_member(X,[Y|Z]) :- f_member(Y/*bug*/,Z).  

The suspect tree ST(failure(subset([2],[1,2]))) follows, shown here without the 
labels for the program component instances: 
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Figure 2.3: A suspect tree 

 → 

The suspect set for a goal behavior facet F, SS(F), is the set of all program 
component instances labelling nodes in ST(F). Notice that similar component 
instances (say, equal clause variants modulo variable renaming) do not merge into a 
single suspect. 

Finally, notice that these definitions apply to any goal behavior facet, and not 
necessarily to bug manifestations: considering or not those as such is a matter for 
the oracle to decide. 

2.2.2. Existence of a bug instance in a suspect set 

We now present a fundamental proposition. 

Proposition 1  Given a bug manifestation T, its suspect set SS(T) contains a bug 
instance. 

Proof SS(T) contains a bug instance iff ST(T) contains a node labelled with a bug 
instance. Now if T is a bug manifestation, o_s(incorrect,T) is true. Therefore there's 
a node D in ST(T) such that o_s(incorrect,D), and, for each of its children Di (if 
any), o_s(correct,Di); either T is such a node or, recursively, there's one in its 
children subtrees, given that ST(T) is a finite tree. 

The result follows directly from the definitions for suspect tree and bug instance, 
that guarantee node D to be labelled with a bug instance: if D is a solution facet 
matching clause instance C, by mapping each of the node's children into a subgoal 
of C; if D is a failure facet, for a goal with predicate instance body P, by mapping 
each child into a goal in P. → 

The proposition unifies potentially separate results concerning wrong and missing 
solutions. This is possible because we're abstracting from the bug manifestation 
types, through the use of generic goal behavior facets. 
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2.2.3. Refining suspect sets with the oracle 

We'll now see how to make a suspect set smaller (refine it) by using oracle 
information, while guaranteeing that it contains a bug instance. 

Proposition 2 Take a bug manifestation F and an oracle theory OT, and a node F' in 
ST(F) with program component instance PCI, a computed instance of a program 
component PC for which correct_component(PC) is true; then the suspect set 
SS(F)\{PCI} contains a bug instance. 

Proof Similar to proposition 1, considering the tree obtained from ST(F) by 
removing the F' node, and making its children children of its father.→ 

A node matching a program component instance known to be correct is ignored, 
although its descendents are not. 

Proposition 3 Take a bug manifestation F and an oracle theory OT, and a node F' in 
ST(F) for which o_s(correct,F') is true in OT; then the suspect set obtained from 
SS(F) by removing all suspects in SS(F') contains a bug instance. 

Proof Similar to proposition 1, considering F' as a leaf of the original suspect tree 
ST(F).→ 

In other words, if the root of a suspect subtree is correct we can discard the subtree 
because there's a bug instance elsewhere. The dual case corresponds to using 
incorrectness statements, applying proposition 1:  

Proposition 4 Given a bug manifestation F and an oracle theory OT, and a node F' 
in ST(F) for which o_s(incorrect,F') is true in OT, then SS(F') contains a bug 
instance.  

Proof Follows directly from the definition of bug manifestation and proposition 
1.→ 

We can thus be sure that, given enough consistent oracle statements, at most one for 
each goal behavior facet in the suspect tree, a bug instance will be found in any 
suspect set for a bug manifestation, since it is finite. Discarded suspects may also be 
bug instances, but at least one is guaranteed to remain (although not necessarily the 
one responsible for the original bug manifestation in the top goal).  

For later convenience we'll now define notation for the outcome of refining. Given 
an oracle theory OT, and a bug manifestation F: 
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A refined suspect set, RSS(F,OT), is a minimal1 set obtained from SS(F) by refining 
it using propositions 2, 3 and/or 4, using the oracle theory OT. 

It is not necessarily unique, because of the oracle theory rules for subsumed 
statements, which may cause additional incorrect facets (i.e., roots for suspect 
subtrees) to be pointed out, allowing multiple uses of proposition 4. 

Example Consider the following program fragment, and a top goal being 
executed by an interpreter that uses clauses in arbitrary order. Assume that during 
execution 2 goal calls are made in different parts of the top goal execution: 
even(s(X)), whose subderivation was constructed by the interpreter choosing the 
clause (1) first, and even(s(s(s(X)))), during which subderivation clause (2) was 
preferred first.  

(a) even(O). % bug: should be zero instead of a free variable 

(b) even(s(s(X))) :- even(X). 

Here are the 2 suspect trees for the subderivations: 

 

Figure 2.4: Two suspect trees for one statement 

Now assume that the oracle stated o_s( incorrect, solution(even(s(s(s(X))))) ). By 
knowing that even(s(X)) subsumes even(s(s(s(X))))), it follows that o_s( incorrect, 
solution(even(s(X))) ) is true in the debugger theory. Therefore the suspect set 
{even(s(Y)):-true} could be focused on as the refined suspect set, instead of 
{even(s(s(s(X)))) :- even(s(X)), even(s(X)):-true}, with obvious advantage because 
it is smaller. → 

A refined suspect tree, RST(F,OT), is the suspect tree associated to a particular 
RSS(F,OT). It is obtained from ST(F) by excluding the nodes whose program 
component instances are not in RSS(F,OT). It is not necessarily unique. 
Furthermore, if a node B under another node A in ST(F) has children nodes, and it 
is excluded in RST(F,OT), because it matches a program component known to be 
correct, then these nodes become children of A in RT(F,OT). 

                                                

1 Regarding inclusion, not cardinality. There may be multiple RSSs with different cardinalities. 
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Proposition 5 Given a bug manifestation F and an oracle theory OT, RSS(F,OT) 
contains a bug instance, and RST(F,OT) contains a node labelled with a bug 
instance. 

Proof Follows directly from proposition 1 and the previous definitions.→ 

Lemma NON_EMPTY_REFINED Given a bug manifestation F and an 
oracle theory OT, RSS(F,OT) is nonempty. 

Proof Follows directly from the previous proposition.  → 

2.3. Finding bug instances 

2.3.1. The “game” of bug hiding 

In order to develop diagnosis algorithms it's useful to view the diagnosis process as 
a two-player game, played between debugger and bug, the “moves” of the latter 
being represented by the oracle answers. Each debugger move consists in selecting 
a suspect to query the oracle about. Each bug move consists in an answer (correct, 
incorrect) by the oracle to a debugger query. The game begins with a given bug 
manifestation, and terminates when a bug instance is found. The debugger must 
imagine the worst case, i.e. that the bug is such as to maximize the number of 
moves needed to find it, whereas the debugger tries to minimize that number.  

Of course, bugs are just sitting there, and they have no malevolous nature… But this 
analogy helps to clarify the debugger strategy: to choose the next “best” oracle 
query in this game. 

2.3.2. The bug instance search tree 

We'll now define the search tree for the “game of bug hiding”. Its main motivation 
is to clarify the options available for the diagnosis algorithms.  

But first let the statement addition OT+OS to an oracle theory OT of a statement 
OS = o_s(Status,F) be as follows: if OT|=OS, OT+OS is OT, else OT+OS is OT 
≈ {u_s(Status,F)}. This operation is undefined if either OT or OT ≈ {u_s(Status,F)} 
is inconsistent. 

The bug instance search tree for a bug manifestation T, given an oracle theory OT 
(possibly empty except for the integrity constraints and custom rules; i.e. initially 
there may be no statement additions), is denoted by BIST(T,OT), and is defined as 
follows: 
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• The tree has two types of nodes: debugger nodes and bug nodes.  

• The root of the tree is the debugger node bist(T,OT). 

• Each debugger node is labeled with a bug manifestation and an oracle theory, and 
is represented by bist(F,OT'). It has a (bug node) child query(Fi,OT') for each goal 
behavior facet Fi (except F) matching a suspect in the union of all RSS(F,OT') sets; 
it has no children if any of all RSS(F,OT') sets is a singleton. 

• Each bug node is labeled with a goal behavior facet and an oracle theory; it is 
represented as query(F,OT'). Let its father be a debugger node with bug 
manifestation G. The bug node has the following children:  

•• a (debugger node) child bist( G, OT'+{ u_s(correct,F) } ) 

•• a (debugger node) child bist( F, OT'+{ u_s(incorrect,F) } ) 

Notice that OT' doesn't imply u_s(correct,F) nor u_s(correct,F): if that were 
the case, this query node wouldn't belong to the tree. 

Oracle theories in debugger nodes get progressively larger near the tree leaves, 
corresponding to more and more “possible user statements”1 u_s(S,F); a larger 
oracle theory “at the start” (i.e., at the root) will tend to make the tree smaller. 

Example Consider the following buggy program, producing wrong solution p: 

p:-q.  q:-r.  r:-t.  t. 

Here's the suspect tree for p, ST(p), where all nodes are solutions: 

 

Figure 2.5: A suspect tree 

And now the bug instance search tree, BIST(p,{o_s(incorrect,solution(p))}): 

                                                

1 I.e., statements hypothetically considered by the algorithm, but not yet pronounced on by the user. 
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Figure 2.6: A Bug Instance Search Tree 

Nodes above have the following meaning: 

Is b correct ?

d is  diagnosis

The root of a suspect tree

 

Figure 2.7: BIST legend 

 → 

This tree makes explicit all possibilities of querying the oracle. We'll now make 
sure that we can actually find bugs using it! Notice in the previous example that 
diagnoses can be found at BIST leaves. 

Proposition 6 Let T be a bug manifestation and OT an oracle theory. A program 
component instance is a bug instance if it is contained in a RSS(L,OT'), bist(L,OT') 
being a leaf of  BIST(T,OT). 

Proof All leaves are debugger nodes, because bug nodes always have two children. 
If a debugger node bist(F,OT') is a leaf, then at least one of the sets RSS(F,OT') has 
a single element I. Since by definition of debugger node F is a bug manifestation, 
then by proposition 5 I is a bug instance.→ 

Proposition 7 Given a bug manifestation T and an oracle theory OT, there are no 
certified bug instances matching goal behavior facets in non-leave nodes of 
BIST(T,OT). 

Proof Take a debugger node bist(F,OT') with descendents. F being a bug 
manifestation by definition of debugger node, it may match a bug instance. But all 
sets RSS(F,OT') have more than one element, and therefore it may be the case that F 
doesn't match a bug instance.→ 
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2.3.3. The basic algorithm 

From the notion of bug instance search tree one can immediately define a 
straightforward diagnosis algorithm, which starts at its root and goes down to find a 
diagnosis at a leave, querying the user along the way to obtain user statements: 

1. Given a bug manifestation T and oracle theory OT, compute 
BIST(T,OT). Make the root the current node. 

2. If the current node is a leaf bist(G,OT'), return as diagnosis the single 
element of any RSS(G,OT') which is a singleton. 

3. Select some child of the current node, a bug node query(Fi,OTi).  

4. Query the user about the correctness status S of goal behavior facet 
Fi (“correct or incorrect ?”) and continue at step 2 with bist( Fi, OT 
≈ u_s(S,Fi) ) as the current node. 

Notice that the user query at step 4 is always “necessary”, in the sense that its 
outcome is not yet known to the oracle. If that was the case, the corresponding 
query node in the BIST would not exist, because it would have been eliminated by 
previous suspect set refinement (cf. definition of BIST in the previous section). 

It's also interesting to remark that the algorithm may produce as final result one of 
several diagnosis, whenever multiple RSS sets exist at the final step. For this to 
happen, the oracle must be able to “recognize” subsumed incorrectness statements. 
(cf. section “Refining suspect sets with the oracle” in chapter 2). 

This algorithm should not look very “intelligent” to an user, because it may ask 
more queries than necessary, since no attempt is made at minimizing queries. But it 
serves as a conceptual basis for the improved diagnosis algorithms to be developed 
further on.  

Notice that it is guaranteed to terminate, because each iteration makes the “current 
bug instance search tree” smaller, and the first tree is finite: this algorithm is defined 
over a “post-mortem” representation of a (finite) SLDNF tree. 

2.3.4. “Intelligent” algorithm 

An “intelligent” algorithm should find a diagnosis requiring as little information as 
possible from the oracle. For now we're solely concerned with “intelligence” as 
perceived by the user, abstracting from the computational cost involved. 
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A query set expresses the notion of a set of (oracle) user statements used to refine a 
suspect set, and is defined for a bug instance search tree node, as follows. Given 
some initial bug manifestation T and oracle theory OT, the query set for a debugger 
node bist(F,OT') in BIST(T,OT) is {all user statements in OT'}\{all user statements 
in OT}. A diagnosis query set is a query set for a leaf node in BIST(T,OT). 

A query sequence is a particular ordering of a query set, corresponding to a path of 
bug nodes in a bug instance search tree. A diagnosis query sequence is a query 
sequence for a leaf node. 

The query sequence cost  for a query sequence is the cost, for the user, of producing 
the user statements in sequence. For now we'll assume this cost to be the number of 
user statements  in the sequence1. 

We can now transform the basic algorithm into an “intelligent” one from the point 
of view of the user, by redefining step 3: 

3'. Select a child of the current node, a bug node query(Fi,OTi), such 
that the maximum cost for any diagnosis query sequence starting in the node 
is minimum.  

This algorithm is optimal, in the sense that it minimizes the maximum number of 
user statements needed to find a diagnosis - i.e. it concerns itself with the “worst 
case”. Remark that for any query about goal behavior facet F, we do not have 
additional information or expectation on whether F is correct or not.  

2.3.5. “Better” algorithms 

Bug instance search tree are enormous2, and therefore the previous “intelligent 
algorithms”, as they were stated, lack practical interest for debugging non-toy logic 
programs.  

Example Following is an example suspect tree for a goal behavior facet, 
omitting everything but node facet names: 

                                                

1 We'll return to this point in section “Improving the present framework”, chapter 9. 

2 In the worst case, for a “flat” suspect tree with N nodes, the respective BIST will have N-1 levels. 
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ST(a)  

Figure 2.8: A suspect tree 

And the corresponding bug instance search tree, showing just a small part in detail, 
a subtree rooted in one of the most promising query nodes, because the subtree 
height is smaller as can be gleaned from the larger picture: 
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Is b correct ?

d is  diagnosis

The root of a suspect tree

BIST(a)

Legend

 

Figure 2.9: A “small” BIST 
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 → 

The purpose of the previous sections was to lay conceptual ground, rather than to 
provide an implementation scheme. As the past history of Artificial Intelligence has 
shown, we can improve the situation by using additional information, and thereby 
specializing the generic algorithms. 

2.4. Search heuristics 

2.4.1. Divide-and-Query: reconstruction and generalization 

We'll now reconstruct, abstract and generalize Shapiro’s Divide-and-Query (D&Q) 
algorithm, by using the previous algorithm with an “evaluation function” or 
heuristic that gives an upper bound on diagnosis cost. 

Given an oracle theory OT and a bug manifestation F, a smallest refined suspect set, 
RSSSMALL(F,OT), is any of the RSS(F,OT) sets with smallest cardinality. 

Proposition 8 Let T be a bug manifestation, OT an oracle theory, and bist(T,OT) 
the root node of BIST(T,OT). Consider any of RSSMIN(T,OT). It is possible to find 
a bug instance with a diagnosis query cost less or equal to its number of elements, 
#RSSMIN(T,OT).  

Proof In order to find a diagnosis with cost no greater than #RSSMIN(T,OT), 
simply follow a path from the root to a leave, always passing through debugger 
nodes whose goal facets match elements of RSSMIN(T,OT). Each query node in the 
path “refines RSSMIN”, “removing” at least one of its elements.→ 

We now define the Abstract Divide and Query or AD&Q algorithm, so called 
because it will not be defined and used solely for the wrong solution problem, as 
other authors do, but instead abstracts from the type of suspects involved. It's 
obtained from the intelligent algorithm by redefining step 3: 

3''. Select a child of the current (debugger) node, a bug node 
query(Fi,OTi) with two debugger node children bist(A,OA) and bist(B,OB), 
such that max{#RSSMIN(A,OA), #RSSMIN(B,OB)} is minimum.  
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Notice that if each refined suspect set is unique1, the generic upper bound above 
(#RSSMIN) is simply the number of children of a debugger node, or the current 
number of suspects. In other words, it particularizes to Shapiro's (suspect) tree 
weight.  

Example Following is a buggy program example from [48], with a missing 
solution qsort_l([3,1,2],[1,2,3]): 

 
qsort_l([],[]). 
qsort_l([A|B],[C|D]) :- 
    partition_l(A,B,L1,L2), 
    qsort_l(L2,S2), 
    qsort_l(L1,S1), 
    qappend_l(S1,[A|S2],[C|D]). 
 
partition_l(A,[],[],[]). 
partition_l(A,[B|C],[B|D],E) :- A>=B, partition_l(A,C,D,E). 
partition_l(A,[B|C],D,E):-  % should be partition_l(A,[B|C],D,[B|E]) 
    A<B, 
    partition_l(A,C,D,E). 
 
qappend_l([],L,L). 
qappend_l([X|L1],L2,[X|L3]) :- qappend_l(L1,L2,L3). 

 

The suspect tree for the missing solution above is: 

 

Figure 2.10: Suspect tree for a missing solution 

And the query sequence for AD&Q follows, starting with the top goal: 

                                                

1 If no identical or subsumed statements are recognized. 
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Figure 2.11: Complaining about a missing solution 

 

Here's the full sequence: 

 

Goal behavior facet term Type Correct ? Comments 

qsort_l([3,1,2],[1,2,3]) failure no top goal solution 

qsort_l([1,2],[1]) solution no The user is shown the set of 

solutions for goal call 

qsort_l([1,2],L). 

partition_l(1,[2],[],[]) solution no  

partition_l(1,[],[],[]) solution yes Diagnosis 

Table 2.3: A query/answer sequence 

Only a total of 4 queries is necessary. [57]'s algorithm N.3, the best peforming in his 
comparison, needs 5. Our queries are identical, except for the query about goal call 
q_append_l([1],[3],[1,2,3]), which AD&Q skips because of its “divide and conquer” 
criterium.  

After which the diagnosis is, as expected: 
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Figure 2.12: An HyperTracer diagnosis 

 → 

AD&Q maximizes the suspect set refinement in a single query step, when we lack 
additional information about the probablity of the user statement being of the 
“correct” or “incorrect” kind. But in general it does not minimize the final diagnosis 
query sequence cost, because the intelligent algorithm's search is restricted to a 
“one-ply” game lookahead. 

Example Consider the following suspect tree, and the oracle theory 
{o_s(incorrect,a)}. 

 

Figure 2.13: Unbalanced suspect tree 
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AD&Q would pick node b for querying next, because it is the “heaviest” node. 
However, the most malevolous bug instance could be matching one of the nodes on 
the right subtree. Therefore, in the worst case 8 queries would be needed: 
b,j,k,l,m,n,p,q, for example. But if our debugger decided to query about j first, in the 
worst case only 7 queries would be needed: j,k..q; if the bug instance was matching 
a node in the left subtree, less queries would be necessary, for example j,e,g,h,i. → 

We now parametrize AD&Q with the number N of “game plies” to look ahead, 
obtaining a preliminary version of Generalized Divide and Query(N), or GD&Q(N): 

3'''. Consider the set SN of query node descendents of the current node 
that are N plies (2N-1 levels) below in the tree, or higher if they're leaves.  
Select the child of the current node, a bug node Q, minimizing 
max{#RSSMIN(A,OA), #RSSMIN(B,OB)}; bist(A,OA) and bist(B,OB) 
being children of a node in SN descending from Q. 

GD&Q(1) is equivalent to AD&Q, and GD&Q(∞) to the intelligent algorithm, 
assuming query sequence cost to be the number of user statements. 

2.4.2. Suspect tree form factors 

We now turn to a more informed upper bound on diagnosis cost, to use as 
evaluation function, which takes into account the form of the suspect tree from 
which the bug instance search tree is defined. Recall, from the proof of proposition 
8, that the previous upper bound was simply #RSSMIN, abstracting from the 
structure of the suspect tree. 

We borrow a result from Shapiro, the upper bound on the number of queries for his 
D&Q algorithm1: b logb n, where b is the maximum number of children of any node 
in the AND tree of a wrong solution, and n the number of tree nodes. 

Given a bug manifestation T and an oracle theory OT, the form-aware bound on 
diagnosis cost, hf(T,OT), is defined as follows: the smallest value b logb n (for all 
refined suspect trees RST(T,OT)), where b is the maximum number of children of 
any node in RST(T,OT), and n is the number of nodes in the tree. 

The final version of Generalized Divide and Query(N) follows: 

                                                

1 His result was actually b log n, which in general is too large; b log b n = (b/log b) log n is a smaller 

bound, which also satisfies his recurrence relation I(n) ([83], page 47). By log X we mean log2 X. 
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3''''. Consider the set SN of debugger node descendents bist(F,OT) of the 
current node, that are N plies (2N levels) below in the tree, or higher up if 
they're leaves.  Select a child of the current node, a bug node Q, minimizing 
the maximum hf(F,OT) for any descendent of Q in SN.  

Example Getting back to our previous example, it can be easily seen that 
GD&Q(1) will pick node j first, minimizing the maximum necessary number of 
queries until diagnosis. → 

2.4.3. Complexity issues 

The Abstract Divide & Query algorithm needs at most b log b n queries, if each 
refined suspect set is unique1: it becomes essentially Shapiro's Divide and Query but 
abstracted from bug type. 

The distinctness of Generalized Divide & Query(1) lies in its evaluation function b 
logb n, which in practical terms makes GD&Q(1) query first about roots of wide 
(large b) subtrees; the resulting refined suspect tree may eventually have a smaller 
b, after the ellimination of its widest subtree. This situation is where GD&Q(1) 
manifests its advantages over D&Q. In general, the number of queries may be as 
low as b logb n - [ b + 1 - log2 (b+1)]. So b+1-log2 (b+1) is the maximum gain to 
expect from the use of GD&Q(1). 

Example The following suspect tree, with b=6, will be “visited” by AD&Q 
from  right to left in the worst case (AD&Q defines no ordering for subtrees with 
the same node count), whereas GD&Q(1) will visit it from left to right. The most 
malevolent bug will require 12 queries with AD&Q, instead of just 8 for GD&Q(1). 

                                                

1 If no subsumed statements are recognized. Otherwise additional oracle refinements will occur 

automatically, and less queries will be needed, which would correspond to the refined (removed) 

suspect subsets. 
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Figure 2.14: A “Debugger-Hostile” suspect tree 

 → 

As a corollary, notice that for uniform suspect trees, with all nodes having the same 
number of children, GD&Q(1) would bring no advantage over AD&Q. 

Regarding computational complexity, both AD&Q and GD&Q(1) require two linear 
suspect tree visits: one to obtain global information about the tree, and the second to 
pick the best node. The first visit can be amalgamated with the oracle refinement 
process. The whole process will therefore be O(n) (assuming direct accessibility of 
the suspect tree and oracle statements), except for the use of oracle rules for 
sophisticated refinement (such as subsumption), which will add to it. 

We couldn't estimate accurately the advantage of GD&Q(N) (for N>1) over 
GD&Q(1). We conjecture it to be less appealing, considering the associated 
computational cost. 

2.5. Domain heuristics 
In addition to search-related heuristics, we may use information about the 
probability of an user answer. If, for a goal behavior facet, we can assign different 
probabilities for the user stating it correct or incorrect, we can adapt GD&Q(N) 
accordingly, to minimize the expected diagnosis cost. To the result we call 
Probabilistic Divide and Query(N), or PD&Q(N): 
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3''''. Consider the set SN of debugger node descendents bist(F,OT) of the 
current node, that are N plies (2N levels) below in the tree, or higher up if 
they're leaves.  Select a child of the current node, a bug node Q, minimizing 
the expected1 hf(F,OT) for any descendent of Q in SN.  

The probabilistic domain information can be gleaned from experienced human 
debuggers. In [68] several heuristics are proposed.  

PD&Q(N) reduces to GD&Q(N) if the user answer probabilities are always equal 
(50% both for a “correct” or “incorrect” statement). Notice also that although the 
average performance of PD&Q(N) will in general be better than GD&Q(N)'s, the 
worst case performance, when the user states the unexpected, will degrade: more 
queries will be needed to reach a diagnosis. 

2.6. Clever execution interpreters 
So far we've been building a declarative debugging framework for generic SLDNF. 
But how dependent are we from each particular control strategy ? No matter what 
the execution strategy for each particular computation, as long as it is sound and 
complete regarding SLDNF, the present framework can be applied. On the other 
hand, some strategies are more interesting than others. 

“Clever execution principle”: given a bug manifestation T for a computation 
strategy A using a particular program, with suspect tree STA(T), the diagnosis cost 
will be lower if we define STB(T) from a smaller but equivalent computation B 
which avoids redundant computations. The roots of redundant subcomputations can 
be safely ignored, because there will always be a corresponding (non-redundant) 
subcomputation elsewhere which can be examined for debugging purposes.  

We now examine two possibilities for taking advantage of this principle: 
“sidetracking” and “intelligent backtracking”. 

                                                

1 By taking a weighted average of the estimative function in all nodes N  plies below (or higher if 

leaves), with the combined probabilities of the query/answer sequences until them. 
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2.6.1. Sidetracking 

An interpreter performing sidetracking orders goals according to their 
“determinism”, i.e. their tendency to originate choicepoints with a small/large 
number of choices. The idea is to execute first goals that leave less choices open, 
such as for example a goal matching a single or no clause, so that failures tend to 
originate early in the execution, and less backtracking is needed to find a solution or 
to conclude that there isn't any. This idea was explored in [74]. It has been revived 
lately in connection with the Aurora language work, to better parallelize the 
execution of conjoined goals [88]. 

We can take advantage of such a mechanism by simply constructing a suspect tree 
from the computation trace under sidetracking, as long as the language we're using 
(say, normal programs) is supported by the sidetracking executor1. The parts of the 
suspect tree depending on failures will tend to be smaller, with less nodes and 
smaller tree branching factor, and less queries will be needed for a diagnosis. The 
parts corresponding to successful derivations won't bring any advantage, because 
the sidetracking mechanism preserves them, although possibly building them in a 
different order. 

2.6.2. Intelligent backtracking 

Backtracking being one of the first search strategies invented, it was one of the first 
to suffer improvements. “Non-chronological backtracking” was the term used in 
[85] for the strategy followed by an electric circuit constraint solver, using 
dependencies among variables to guide search, instead of performing blind or 
“naive” backtracking. Later this idea was generalized for logic programming, for 
example [75], [10]. And lately the first compiler-based implementation was done 
[18], promising the availability of efficient intelligent backtracking in future Prolog 
implementations. 

                                                

1 For example, the presence of Prolog cuts imposes an ordering for subgoal evaluation, inhibiting 

sidetracking in general. 
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The basic idea of intelligent backtracking, as applied to Prolog, is to follow the 
normal execution order of Prolog, but to change the way backtracking is done. 
Essentially, rather than blindly failing back to the previous choicepoint, if it is 
known that the present failure could not possibly be caused by the variable bindings 
done at that last choicepoint, then execution jumps back to some older choicepoint. 
In many cases this avoids the plaguing thrashing behavior of naive backtracking. 

As with sidetracking, the advantage for debugging consists in having smaller and 
narrower (i.e. with smaller branching factor) suspect trees for failures, whenever 
intelligent backtracking avoids useless search1. Suspect trees for solutions are the 
same, except for parts affected by negation. The first application of intelligent 
backtracking to debugging, and the only one implemented, is [64]. 

Whereas an intelligent backtracking executor is concerned only in minimizing 
search using a correct program, its use for debugging requires additional care. In 
particular, whenever a goal match with a clause binds or simply tests a variable 
involved in a later unification failure, it must always be considered as suspect, even 
if there are no clauses left (i.e., if it is no longer a choicepoint). This requires 
information from the executor, and forbids some of its optimizations. 

2.7. Relaxing the basic setting assumptions 
We'll now review the assumptions we spelled out at the beginning, and examine 
how they affect the framework developed so far. 

2.7.1. Inconsistent oracle 

We assumed the oracle to be consistent. But in a practical setting, the oracle being 
based on a human, we must consider the case where the oracle “contradicts itself”.  

                                                

1 Two somehow similar situations are already “built-in” the debugging framework: since negated 

goals can't produce variable bindings affecting their brother goals, due to the negation as failure 

mechanism, when they succeed they're ignored in what concerns the missing solution problem, (cf. 

definition of incomplete predicate instance); and also in the oracle rule for solutions to goals that 

they subsume (cf. “Customized Oracle Theory” section).  
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Since the oracle theory contains statements about goal behavior facets, rather than 
about literals, and since the user is never asked to classify the same goal behavior 
facet twice, it is impossible to have directly contradictory statements. The other type 
of oracle inconsistency arises when the diagnosis obtained is unsatisfactory to the 
user: 

o_s(incorrect,F)^ #RSS(F,OT)=1 ^ (F matches an instance D of 

program component C) ^ “C is correct” 

OT is the oracle theory including all user statements until the diagnosis D is 
obtained, and “C is correct” is a different type of oracle statement, akeen to 
correct_component(C) but not so firm. This type of oracle statement is obviously 
hard to obtain from the user (except in the form of the referred program 
specifications, or additional oracle knowledge, in which case such components will 
never be given as diagnosis): were it easy this thesis would be useless1 ! The only 
situation where we consider obtaining it is for the user to complain about the 
debugger. 

In order to retract the diagnosis, the user must be given the chance to retract one or 
more of his statements implying the diagnosis. In other words, he must refute the 
diagnosis, according to the bug instance definition which the debugger uses. 

Let U be the relation u_s(Status,Facet) in OT, and OT'=OT\U. The user must 
change at least a statement in the relation U', a minimal subset of U such that 
o_s(incorrect,F)^ #RSS(F,U'≈ OT')=1. Typically U' will comprise the statements 
about literals appearing in the buggy instance D. 

A practical declarative debugger must therefore provide “diagnosis explanation” 
and “oracle statement undo” facilities, allowing the user to examine U' and change 
it, respectively.  

2.7.2. Infinite computations 

Infinite computations are pervasive in many computer programs, irrespective of the 
programming language. Logic programming is no exception.  

                                                

1 Because if the user could classify program source components as correct or incorrect, he wouldn't 

need to use a debugger. 
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We conjecture that there are infinite computations for which it is not possible to 
have a diagnosis along the lines of the present chapter. We defined diagnosis in 
terms of declarative semantics, whereas infinite computations stem from the 
operational semantics.  

For example, a repeated recursion pattern may be automatically detected in a buggy 
nonterminating computation, but it may be impossible to refine the set of goal 
suspects in that pattern, at least with declarative information alone. Other authors 
[83] have used non-declarative extensions to the oracle: this assumes the availability 
of a well-founded ordering of goal calls - an operational concept. 

There are of course cases where a wrong or missing solution with a finite 
subcomputation can be detected1. In such cases a bug can be found with any of the 
previous algorithms. A practical debugger must therefore provide inspection 
facilities for interrupted computations2. 

2.7.3. Floundering computations 

A floundering computation (a computation selecting a non-ground negative literal) 
is usually regarded as an error3. Which raises the question of its declarative 
debugging.  

Floundering occurs when all goals in an SLDNF-tree node are nonground negative 
literals. If the node has a single negative literal, floundering can be regarded as a 
particular case of inadmissible goal call (cf. next chapter), and hence a bug instance 
can be found. This can be useful for systems without goal delaying, like most 
existing Prolog systems. We have no solution to the general problem however. 

2.8. Relationship to declarative semantics 
The framework developed so far, in particular the part related to the oracle theory, 
maps directly into standard declarative semantics concepts: 

                                                

1 Or an inadmissible goal call (cf. next chapter). 

2 “Infinite” computations are typically detected by the user, who presses a “ctrl-c” key or something 

similar, after having waited in vain for its normal completion. 

3 It could also be regarded as a feature rather than a nuisance, for example by considering the 

(floundering) negated goals as informative constraints on its variables.  
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Declarative Semantics Our Framework 

Intended model Oracle theory 

False solution G o_s(incorrect,solution(G)) is true 

Missing solution G o_s(incorrect,solution_set∅(G)) is true 

False clause Wrong clause instance 

Uncovered goal G Incomplete predicate instance matching G 

Table 2.4: Relationship to declarative semantics 

The reasons why we decided to develop our own framework, rather than just using 
standard semantic concepts, are essentially the following: 

• To abstract from the type of bug manifestation, concentrating on relevant common 
aspects, and thus develop a uniform diagnosis framework. 

• To tackle impure logic programming dialects and the new bug manifestations they 
originate, such as in Prolog; this will surface in subsequent chapters. 
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3. Other framework issues 

In this chapter we discuss some improvements and adaptations to the previous 
framework, but still without introducing Prolog's main impurities. The 
improvements are: to debug type violations, to allow refined oracle statements, and 
to deal with meta-interpreters and transformed programs.  
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3.1. Inadmissible (type-violating) goals 
In this section we'll introduce a new type of bug manifestation, for logic programs 
using partial relations - inadmissible goals. This was first defined in [64], and later 
revisited in [68], where we presented an approach similar to the one below. 

3.1.1. Type violations 

Wrong clauses and incomplete predicate definitions are unsatisfactory as diagnosis 
in many situations. This happens because logic programmers usually leave many 
details implicit in predicate definitions. Namely, they tend to express partial 
relations, leaving undefined a substantial part of the relation's domain because they 
expect it to be unnecessary for the use of the program. 

Example Consider the following program: 

top(L) :- append([a,b],not_a_list,L). 

append([],L,L). 

append([X|L1],L2,[X|L3]) :- append(L1,L2,L3). 

Assume that for goal top(L), the solution top([a,b|not_a_list]) is considered wrong. 
The traditional declarative debugging approach gives us as diagnosis one of the 
clauses of append, because append does not check that its second argument is a 
list. It will accept any term instead! → 

Rather than adopting this traditional purist philosophy, expecting programmers to 
provide exaustive and cumbersome case analysis, it seems more reasonable to 
accept the practical status quo, and to provide mechanisms to find the real bug in the 
previous example: the top clause has an inadmissible subgoal, because it makes an 
inadmissible goal call to append which violates the implicit data type it supports.  

3.1.2. Inadmissible goal calls 

We now define the changes to the oracle framework. The basic idea is that now 
goals can be inadmissible or admissible; and if they're inadmissible, the correctness 
status of their solution set is undefined. 
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An inadmissible goal call is a goal call which is considered by the oracle as a bug 
manifestation, irrespective of calling context as well as of its solutions. In the 
previous example, append([a,b],not_a_list,L) is an inadmissible goal 
call. An admissible goal call is one which is stated not inadmissible. 

This brings attention to goal calls, turning them into an additional type of goal 
behavior facet. Here's our updated table for oracle statements: 

 

Type Status Meaning 

call correct goal is admissible 

call incorrect goal is inadmissible 

solution correct solution is correct for an admissible goal call 

solution incorrect solution is incorrect for an admissible goal call 

solution set correct all solutions for the admissible goal are correct, and 
none is missing 

solution set incorrect the solutions for the admissible goal are correct, but 
some are missing 

Table 3.1: Oracle framework for inadmissible calls 

Since inadmissible goals have undefined correctness status for their other facets, we 
should add the following rule to the customized oracle theory, expressing the 
absence of statements about them: 

o_s(incorrect,call(G)) ∅ 

¬ o_s(_,solution_set(G)) �  

( solution(call(G),N,_,_)  ∅ ¬o_s(_,N) ). 

And also a rule to use subsumption between goal calls: 

subsumed_facet(call(G1),call(G2)) �  “G1 subsumes G2”. 

 Consequently (cf. Core Oracle Theory above), a goal call subsumed by an 
admissible call is automatically found admissible; and a goal call that subsumes an 
inadmissible call is automatically found inadmissible. 
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3.1.3. Another bug type: inadmissible subgoal instances 

We now define an additional type of bug instance, inadmissible subgoal instance, 
motivated by inadmissible goal bug manifestations. 

Let A be a goal matching clause instance (H <- B1…,Bi,…Bn). Bi is an 
inadmissible subgoal instance if:   

• o_s( correct, call(A) ) and o_s(incorrect,call(Bi)) are true. 

• Consider the SLDNF-tree for the computation producing the goal call Bi, and the 
path from the A node down to Bi. For each literal Bj (j≠i) in the body which is 
selected in a node in the path, o_s(correct,solution(Bj)) is true. 

With Prolog's left-to-right execution order, the previous Bjs will be simply those to 
the left of Bi. 

We now move to suspect trees for inadmissible goals. 

3.1.4. Debugging inadmissible goals 

We'll define a suspect tree identical in form to those for wrong solutions and 
incomplete solution sets. Only the node names, being unique among all goal 
behavior facets, will be different, as well as the children of the new node type. 

The suspect tree for an inadmissible goal call I, ST(I), is based on the SLDNF-tree 
of the computation producing it, and is defined like the suspect trees for other facet 
types, with the following differences: 

• The root is the node I. 

• Each call facet node G is labelled with its father clause instance C1, and has the 
following children: 

•• ST(A), where A is the goal call matching C (G's goal father). 

•• For each goal solution Bi in C's body, whose goal call is selected in one of 
the nodes in the SLDNF path from A to G, a child ST(Bi). 

• Subtrees for solutions and solution sets are defined as before. 

                                                

1 I.e., such that goal(G,_,C,_) is true in the debugger theory. 
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Suspect trees for goal calls resemble those for solutions, except that the tree looks 
inverted and may correspond to a partial (interrupted) computation. 

Example Consider the following program to count the number of integers in a 
list: 

element_count(X,I):- integer(X), !. % bug: should be 1 instead of I 

element_count(X,0). 

count_int([],0). 

count_int([Y|Z],N):- element_count(Y,NY), count_int(Z,NZ), N is 

NY+NZ. 

On execution of top goal count_int([5,b],N), the goal “N is I+0” will be called, 
violating the type requirements of the arithmetic built-in predicate is. Here's 
ST(call(N is I+0)), layed down horizontally to save space here, and without the 
labels of program component instances. The system built-ins integer and is are 
assumed correct, and therefore do not originate suspects.  

 

Figure 3.1: Suspect tree for an inadmissible call 

The computation leading to “N is I+0” is suspect, including the top goal call (the 
user could have given a type-violating top goal!). → 

The previous debugging framework can be used directly (suspect set definitions, 
debugging algorithms, etc.), by referring to the new definition for suspect trees  and 
using the new oracle. With just a slight difference, patent in the following 
proposition. 

Proposition 9  Consider an inadmissible goal G, under an admissible goal A. Then 
either there is a bug instance in SS(call(G)), or there's another inadmissible goal G' 
under A, labelling a node in ST(G). 

Proof Almost as for proposition 1 (cf. section “Existence of a bug instance in a 
suspect set” in chapter 2). If the oracle stated that the goal call G' for one of the 
solution or solution set nodes in ST(call(G)) was  inadmissible, than that goal call 
could not be an ancestor of G, and therefore its father predicate would not be in 
SS(call(G)).  → 
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We're still sure of finding a bug instance, however, because SS(call(G')) is smaller 
than SS(call(G)), and the proposition applies.  

This approach assumes that inadmissible goals are much less frequent than the other 
bug manifestations, or that typically they're caused by them. The bug instance 
search tree, and the algorithms based on it, depend on the suspect tree definition. 
Since this relegates inadmissible goals to a second plan, by including from the start 
only the ancestors of the first inadmissible goal, the debugging algorithms will also 
plan queries accordingly. 

Example Here's the sequence of queries/oracle statements constructed by 
AD&Q for the previous count_int example, until diagnosis:  

Goal behavior facet term Type Correct ? Comments 

N is I+0 call no detected automatically by the 

debugger, because the 

expression is not ground 

count_int([b],0)  solution yes the node in the suspect tree 

which better “splits” it 

element_count(5,A)  solution no because A is a free variable; 

diagnosis is found: the wrong 

clause instance matching this 

solution. 

Table 3.2: Debugging an inadmissible call 

→ 

3.2. Intensional oracle statements 
Assume the user is able to state that all goal behavior facets satisfying some 
property P are incorrect. Such intensional user statements can be applied to different 
goal behaviors, whether or not there is a subsumption relation among them. Then 
the debugger may be able to refine its current suspect set, because it knows that the 
suspect set for any facet satisfying P contains a bug - in particular, one whose 
suspect set is smaller. 
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For instance, let the user statement be “all goal solutions containing term 
my_type(aa) are incorrect”, say because the argument of the my_type functor must 
be an integer. Then the debugger may be able to refine its current suspect set more 
than by just using the statement “p(..,my_type(aa),...) is incorrect”.  

Example As a concrete example, take the following program, defining a 
predicate that transforms a Prolog term into a tree t(Number,Functor,Children): 

number_term(T,N1,N3,t(n1,F,C)) :- % bug: should be N1 instead of n1 

    T=..[F|Args], N2 is N1+1, 

    number_term_list(Args,N2,N3,C). 

number_term_list([],N,N,[]). 

number_term_list([A1|An],N1,N3,[C1|Cn]):- 

    number_term(A1,N1,N2,C1), 

    number_term_list(An,N2,N3,Cn). 

Here's the suspect tree for wrong solution number_term( a(b,c), 1, 4, 
t(n1,a,[t(n1,b,[]),t(n1,c,[])]) ): 

 

Figure 3.2: A suspect tree 

With ordinary oracle statements, 3 queries are needed by AD&Q to find the bug 
instance: 

Goal behavior facet term Type Correct ? Comments 

number_term( a(b,c), 1, 4, 

t(n1,a,[t(n1,b,[]),t(n1,c,[])]) ) 

solution no top goal solution 

number_term_list([c],3,4,[t(n1,c,[])]) solution no  

number_term(c,3,4,t(n1,c,[])) solution no  

number_term_list([],4,4,[]) solution yes  

Table 3.3: A query/answer sequence 
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If instead the user started by giving an intensional statement about the incorrectness 
of the top goal solution, for example “all solutions containing the term t(n1,_,_) are 
wrong”, AD&Q would need only 1 additional query: 

Goal behavior facet term Type Correct ? Comments 

number_term( a(b,c), 1, 4, 

t(n1,a,[t(n1,b,[]),t(n1,c,[])]) ) 

solution no, neither is 

any solution 

containing 

subterm 

t(n1,_,_) 

top goal solution 

number_term_list([],4,4,[]) solution yes Diagnosis found, because the 

debugger already knows that 

number_term(c,3,4,t(n1,c,[])) is 

incorrect, since it contains the 

term t(n1,c,[]) 

Table 3.4: Debugging using intensional statements 

→ 

In theoretical terms, an intensional statement is just an additional clause to the o_s 
relation, or an “oracle assertion” (along the lines of [25]). Although originally 
motivated by [64]’s “wrong term” statements, intensional statements like that of the 
previous example have little relation with the former, which were used as an 
heuristic to guide search within a fixed suspect set, rather than to immediately refine 
suspect sets. 

The HyperTracer supports a restricted form intensional statement at a time, in the 
form of a filter, which specifies a term that must be present in all suspects1.  

                                                

1 There's no significant technical difficulty in implementing intensional statements as in the example 

above, we simply had no time for doing it.  
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3.3. Meta-interpreted programs 
The use of meta-interpreters is one of the most appreciated features of logic 
programming. An interpreter provides the ability to obtain additional information, 
exert additional control on a “conventional” logic program, usually referred to as 
the object program, or for writing the latter in some different language, for which 
the interpreter provides the semantics. 

Bugs in interpreters can be found using the framework developed so far. But given a 
correct interpreter, i.e. whose predicate definitions are not buggy, how can we find 
bugs in the object program ? Simply by taking into account that interpreters are 
logic programs, and assuming object programs to be codified with the standard 
auxiliary “clause” relation accessible by the interpreter. 

The approach is as follows: given a bug manifestation of the object program, via a 
result computed by the interpreter, apply any declarative debugging method as 
usually; the user is assumed able to answer any query about correctness of any 
interpreter goal behavior facets whose suspect set includes (via clause) some 
object program component. Other interpreter goals are necessarily known correct, 
given that the interpreter is correct. But the user is not assumed to be able to answer 
about the correctness of results of clause goal calls1. 

Eventually a program component instance of the interpreter will be found whose 
head is incorrect and whose body will be wholly correct, apart from one or more 
results of calls to clause (let's call it a meta bug instance). This follows easily 
from proposition 1. Given that the interpreter program component is correct, some 
of the clause results must be incorrect, meaning that one of the respective object 
program components is buggy. But it won't be possible in general to choose a single 
one as the culprit. 

Example Following is a trivial Delta-Prolog [20] program:  

b(2). % bug: should be b(1) 

foo(X) :- ( (X?ev // Y!ev), b(X) ). 

                                                

1 If that was the case, the user would certainly not need a debugger to find the bug! He would simply 

take a look at the object program source to find the incorrect component… 
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And now one of the clauses of a sequencial interpreter for Delta-Prolog1, the only 
one calling the clause meta-predicate: 

… 

i(G,NG,E,Tail,New_Tail) :-  

 clause(G,B), i(B,NG,E,Tail,New_Tail). 

… 

The solution for call foo(X) is foo(2). Assume that foo(2) and b(2) are incorrect. 
After some oracle queries, the debugger will have isolated the following clause 
instance as a likely bug instance (the head being stated as incorrect by the oracle, 
and the second subgoal as correct): 

i(b(2),true,E,Tail,Tail) :-  

 clause(b(2),true), i(true,true,E,Tail,Tail). 

clause(b(2),true) will therefore be concluded incorrect, and the first clause 
of the Delta-Prolog program to be the bug. → 

As the example shows, a crucial issue is to avoid showing irrelevant detail to the 
user. Whenever possible, the declarative semantics of the object program language 
should be used to build simpler queries. Instead of querying the oracle “Is 
i(b(2),true,E,Tail,Tail) a correct solution ?” it would be better to query “Is b(2), with 
empty event trace, a correct solution ?”. 

It should be possible to provide such “pretty printing” of queries for most object 
program languages, using information provided in the interpreter's arguments. But 
in order for our approach to apply, the “pretty-printing relation” between debugger 
queries DQi and their prettier and higher-level counterparts PQi, must satisfy the 
following constraints:  

DQi incorrect × PQi incorrect 

DQi correct × PQi correct  

                                                

1 The interpreter is listed in appendix B. 
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Although we're concerned with showing a query in a higher level form closer to the 
object program semantics, but not necessarily with hiding or abstracting details, our 
pretty-printing relation still reminds of [47]’s abstraction function, in the sense that 
both map a query into another more suitable to the user. Their definition must verify 
a less strict condition, which in our setting would be written as: 

DQi incorrect ♦ PQi incorrect  

This weaker constraint forces them to make “concrete queries” (our DQis) after 
having localized an “abstract diagnosis” (our “meta bug instance”): it may be the 
case that some computation results declared correct via their “abstract” (our 
“pretty”) counterparts are incorrect after all. In principle we could also adopt this 
strategy, and make “ugly” queries at the end. We didn't because: 

1) In many cases it is easy to obtain a pretty printing relation obeying our 
constraints.  

2) We envisage having users which ignore even the existance of the meta-
interpreter, to say nothing of its semantics. For example, a linguist developing a 
natural language grammar executable by a meta-interpreter. 

3.4. Pre-processed programs 
Another useful technique, more efficient1 although less flexible than the use of 
meta-interpreters, is preprocessing, or program source transformation. The 
transformation can be either entirely automatic, as in partial evaluation [50], or 
specified by a preprocessor implemented for a particular case, for example the 
definite clause grammar translator present in most Edinburgh Prologs. 
Conceptually, preprocessing is just a way of embedding the semantics of some 
meta-interpreter into an object program - in the present context better referred to as 
the original program. 

Like an interpreter, a preprocessor can be debugged using the methods for ordinary 
programs. The oracle will just need to have in mind the intended semantics for it. 
But how to find a bug in an object program, while querying the oracle about goal 
behavior facets of the transformed program ? 

                                                

1Usually the preprocessed program can profit more from compilation than would be the case for an 

interpreter+object program. 
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First, to each transformed program component C (a clause or predicate definition) 
we associate a particular subset of the components of the original program, the 
origins set: those and only those components of the program necessary for the 
translation of C. This can be easily computed automatically by the preprocessor 
loading the program. 

Then we simply use any of the previous debugging algorithms, to find a buggy 
component of the transformed program. This assumes the oracle to be able to 
answer all queries about transformed program goals. When a bug instance is found, 
instead of presenting it to the user we present the origins set. If this happens to be a 
singleton, a single buggy program component can be pinpointed in the original 
program, but in general the diagnosis will consist in more than one. 

As for interpreters, if a pretty-printing relation can be defined, obeying the same 
constraints, the queries become simpler to answer by the oracle. 

Example The HyperTracer supports Definite Clause Grammars [62], by using 
a simple pretty-printing function and by keeping the origins set for each transformed 
clause - a single DCG rule. For pretty printing of a non-terminal, the difference list 
is represented separated from the goal arguments, as an ordinary closed list of the 
terminals consumed under the non-terminal (the dots inside the functor sentence 
mean that larger subterms are inside, which can be seen with the graphical term 
browser; it has nothing to do with the DCG pretty-printing): 

 

Figure 3.3: Pretty-printing a DCG goal solution 

For diagnosis, the origins set is used, simply by associating with the transformed 
clauses a reference to the textual DCG rule; for example: 
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Figure 3.4: Showing a bug in a DCG 

 → 
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4. Extensions for impure logic 
programming 

In this chapter we'll leave the safety of normal logic programs and venture into the 
use of impure Prolog features. We'll extend the current framework in order to debug 
programs using such features, but still relying on declarative information alone. 

The main results are: 

• Extensions to the suspect sets, and new bug instance definitions,  to cater for the 
effects of cuts. 

• The definition of a new bug manifestation, “wrong output segment”, and additions 
to the suspect trees, to treat output side-effects. 

• Further extensions to the suspect sets, to treat partially bugs due to the use of 
internal database side-effects. 
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4.1. Cuts 
Our approach consists in extending suspect sets to cater for the effect of cuts, while 
keeping nearly the same declarative oracle framework. It just happens that, in 
general, as we add impure features to the logic programming language, suspect sets 
become larger. 

This approach was first presented in [68]. There we used modified SLDNF trees to 
define the effect of cuts (“behavior justifications”), and also to define suspect sets. 
Here we'll use a more operationally-oriented description, which we hope is more 
easy to follow. 

4.1.1. Changes to the oracle  

How does a logic program with cuts behave erroneously ? The same way as usual - 
by producing erroneous computation results. However, cuts introduce some 
complications.  

First, there's the trivial case of “green cuts” [35], those cuts whose prunning does 
not prevent legitimate derivations to be derived from the program (also called “safe 
cuts” in [49]). Such cuts are merely present for control, and have no declarative 
meaning. Therefore they could be ignored regarding debugging, (cf. [83], p. 76). 
The issue remains however [ib.] of distinguishing green cuts from “red cuts” (or 
“unsafe cuts”, [49]), those prunning search paths leading to successful derivations, 
but which would be logically legitimate only if we gave no logical meaning to cuts. 

Red cuts cause the answer set of a program to depend on the instantiation of goal 
calls. Therefore, in order to describe the intended semantics of the program we need 
<goal call, goal solution> pairs, rather than just goal solutions as for pure normal 
programs. 

Example (Adapted from [51])  

p(X,Y) :- !, X=2,Y=2. % should be X=1, Y=1 

p(2,Y) :- !, Y=2. 

Calling p(X,Y) results in solution p(2,2), which is a correct solution according to the 
traditional semantics. But the “expected” solution would be p(1,1) !  → 
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Rather than ignoring such bug manifestations, we prefer to redefine our oracle 
framework to cater for them. For the above example the correct solutions would be 
specified as {<p(X,Y),p(1,1)>, <p(2,Y),p(2,2)> }. Variables in this specification are 
no longer logical variables, just instantiation patterns. 

We'll now enumerate the necessary changes to the oracle framework. First, we 
revisit the table with the goal behavior facet types, and the possible bug 
manifestation cases.  

 

Type Status Meaning 

call correct goal pattern is admissible 

call incorrect goal pattern is inadmissible 

solution correct solution is correct (wrt a particular goal call) 

solution incorrect solution is incorrect (wrt a particular goal call) 

solution set correct all solutions for the goal are correct (wrt it) and none is 
missing 

solution set incorrect the solutions for the goal are correct (wrt it), but some 
are missing 

Table 4.1: Oracle framework for cuts 

These are the changes: 

• The admissibility of goal calls specifically takes into account their term pattern, 
i.e., the call bindings1; there's no subsumption relation among calls (cf. below). 

• The qualification of a solution's correctness with respect to the goal call.  

• Allow statements about solution sets (i.e., their completeness) only for goals that 
failed completely. By this we mean that their execution was not prunned by a cut to 
one of their ancestors, whether the goal produced solutions or not1. 

                                                

1 Our admissible goals now ressemble Bonnier's “admitted” goals [6], a concept he defined to build a 

semantics for Prolog built-in (i.e., nonlogical) procedures. 
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The remaining core oracle theory still applies. The customized oracle theory suffers 
an important change. The rules for subsumed_facet now become: 

subsumed_facet(solution(S1),solution(S2))�  
 “S1 identical to S2” � “call(S1) identical to call(S2)” 

subsumed_facet(call(G1),call(G2)) �  “G1 is identical to G2”. 

Since the intended semantics is now expressed with input/output relations between 
term instantiation patterns, logical subsumption can no longer be used.  

This fact also invalidates a customized oracle rule: a solution identical to its goal 
call does not necessarily “subsume” other more specific solutions, with respect to 
the intended semantics of the program.  

4.1.2. Bug instances with cuts 

The debugging algorithms presented so far can be employed straightforwardly, 
using instead the modified oracle. But whenever a bug instance is found in a 
predicate definition containing cuts, it may be found “inadequate” (cf. below). 

4.1.2.1. Wrong clause instances 

Here's an example of an inadequate diagnosis obtained with the previous debugging 
algorithms2.  

(1) h(X,a) :- c(X), !. 

(2) h(X,b). 

(3) c(3). % bug: missing clause c(1). 

                                                                                                                                    

1It would be pointless to assign guilt to a symptom which could originate in the goal's context. In 

other words, one would be asking non-declarative information from the oracle, by asking the latter to 

qualify the correctness status to the precedents of a goal call - e.g., “there are no missing solutions to 

goal G1 because the clause calling it has a cut to make G1 deterministic”. Declarativeness implies 

that the oracle statements are valid no matter what the goal's context. 

2 Or with any algorithm from other authors, except for [40], developed independently, and our own, 

as shown at the ESPRIT project 973 review meeting, Paris, October 1987. 
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Goal call h(1,X) will give solution h(1,b). Assume this to be a wrong solution. Then 
a declarative debugger, as described in the previous chapters, would return h(1,b) as 
a wrong clause instance (or clause (2) as a wrong clause, for a declarative source 
debugger). Whereas it should return <c(1), c predicate> as an incomplete predicate 
instance! 

It is thus necessary to redefine bug instances, and subsequently suspect trees, sets, 
etc., in order to find adequate diagnoses. These new definitions assume Prolog's left 
to right execution strategy, and thus we use expressions like “to the left of a cut”.  

A wrong clause instance expresses the notion of buggy clause. Let H be a goal 
solution for a goal G, matching clause instance H<-B1…Bn. This is a wrong clause 
instance if:  

• o_s( incorrect, solution(H) ) is true, and for each literal Bi in the body , 
o_s(correct,solution(Bi)) is true. And: 

• Let PB be the predicate body instance for G. For all goal calls Gi in PB, which are 
textually to the left of a cut, have failed completely, and occur in the clause or in 
previous ones in the predicate, o_s(correct,solution_set(Gi)) is true. 

Such goal calls, if successful, could prevent the buggy clause being used. In the 
previous example, clause (2) would not be considered buggy without additional 
information - unless the solution set for goal call c(1) was stated correct.  

In operational terms, it's as if clauses in a program with cuts were preprocessed, to 
insert the negations of the subgoals preceding cuts in the previous clauses of the 
same predicate, together with the relevant inequalities involving head arguments. 
For the previous example, where X is a head variable without multiple occurrences, 
the we'd simply end up with: 

(1') h(X,a) :- c(X). 

(2') h(X,b) :- ~c(X). 

(3') c(3). 

4.1.2.2. Inadmissible subgoals 

Similarly, we must change the definition for the inadmissible subgoal bug instance, 
now assuming Prolog's left-to-right execution order. 

Let A be a goal matching clause instance (H <- B1…,Bi,…Bn). Bi is an 
inadmissible subgoal if:   
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• o_s( correct, call(A) ) and o_s(incorrect,call(Bi)) are true. 

• Consider the SLDNF-tree for the computation producing the goal call Bi, and the 
path from the A node down to Bi. For each literal Bj in the body to the left of Bi, 
o_s(correct,solution(Bj)) is true. 

And now the additional case to consider when cuts are present: 

• Let PB be the predicate body instance for A. For all literals Gi in PB, which are 
textually to the left of a cut in the predicate, have failed completely, and occur in the 
above clause or in previous ones in the predicate, o_s(correct,solution_set(Gi)) is 
true. 

This corresponds to the second case in the definition of wrong clause instance 
above. 

4.1.2.3. Incomplete predicate instances 

Similarly, we must change the definition for “incomplete predicate instance”. Not 
the least because solution sets have been defined for goals which fail completely, 
i.e. exaust their solutions, whereas with cuts this may not happen, whenever an 
ancestor cut does its prunning. But also because a cut may (erroneously) prevent 
alternatives to be found. 

Example For goal call h(2,Y), the following program fails to produce the 
expected solution h(2,b):  

(1) h(X,a) :- c(X), !, b(X). 

(2) h(2,b). 

(3) c(2). % bug: wrong clause. 

(4) c(3). 

The goal c(2) has its execution prunned by the cut in clause (1), and doesn't “fail” - 
it's “skipped over” on backtracking. And although previous declarative debuggers 
would return predicate h/2 as an incomplete predicate instance (assuming b(2) to be 
legitimately failed), the diagnosis should be instead “clause (3) is wrong”. → 

An incomplete predicate instance expresses the notion of buggy completion rule, or 
of a predicate whose clauses fail to produce an additional solution without any 
“guilt” being assigned to subgoals. It is defined only for goal calls which failed 
completely, i.e. had no search paths pruned by brother or uncle cuts. It is a predicate 
instance <G,P>, for which o_s( incorrect, solution_set(G) ), and such that for all 
goal calls in its predicate body instance, named Gi: 
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• if Gi is a completely failed atomic goal, then o_s(correct,solution_set(Gi)) is true 

• if ~Gi is a negative literal with empty solution set, then o_s( correct, 
solution_set∅( ~Gi' ) ) is true for all solutions Gi' to Gi. 

• if Gi is an atomic goal that didn't completely fail, because it occurs textually to the 
left of a cut that was reached during execution, then o_s(correct,solution(Gi')) is 
true for each solution Gi' of Gi. 

• if  ~Gi is a successful negative literal, with solution ~Gi', occurring to the left of a 
cut that was reached during execution, then o_s(correct,solution(~Gi')) is true. 

• (Other successful negative literals are irrelevant, as in the original definition). 

Notice that successful negative literals are no longer irrelevant if they lead to a cut 
that prunned alternatives. In general, goal solutions leading to a cut that was reached 
must be stated correct for the enclosing predicate to be considered buggy. 

In the previous example, predicate h/2 would not be considered buggy without 
additional information - unless the solution c(2) was stated correct. 

4.1.3. Suspect trees for computations using cuts 

We can now proceed adapting the suspect tree definitions, taking care to preserve 
their properties regarding the new bug instance definitions. 

The suspect tree for a goal behavior facet F, ST(F), is based on the SLDNF-tree of 
the computation producing F, which is not necessarily at its root, and is recursively 
defined as follows: 

• Each node has the name of a goal behavior facet, and is labelled with a program 
component instance 

• The root is the node F. 

• Each solution facet node S is labelled with the clause instance matching it and, for 
each literal Bi in the clause instance body, it has a child as follows: 

•• if Bi is an atom, ST( solution(Bi) ) 

•• if Bi is a negative literal ~G, ST( solution_set∅(G) ) 
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In addition to these, the node may have additional children due to cuts. Let PB be 
the predicate body instance for the goal producing solution F, and P the predicate. 
For all literals Gi in PB, which are textually to the left of a cut, have failed 
completely and occur in the clause or in previous ones in P, the node has a child as 
follows: 

•• if Gi is an atom, ST( solution_set(Gi) ). 

•• if Gi is a negative literal with no solutions, ~G, a child ST( solution(G') ) 
for each solution G' to G. 

• Each call facet node G is labelled with its father clause instance C1, and has the 
following children: 

•• ST(A), where A is the goal call matching C (G's goal father). 

•• For each goal solution Bi in C's body, whose goal call is selected in one of 
the nodes in the SLDNF path from A to G, a child ST(Bi). 

In addition to these, the node may have additional children due to cuts. Let PB be 
the predicate body instance for A, and P the predicate. For all literals Gi in PB, 
which are textually to the left of a cut, have failed completely and occur in the 
clause or in previous ones in P, the node has a child as follows: 

•• if Gi is an atom, ST( solution_set(Gi) ). 

•• if Gi is a negative literal with no solutions, ~G, a child ST( solution(G') ) 
for each solution G' to G. 

• Each solution set facet node is labeled with the predicate instance matching it, and, 
for each literal Bi in its predicate instance body, i.e. all goal calls immediately under 
it, it has one or more children as follows: 

•• if Bi is a completely failed atom, a child ST( solution_set(Bi) ). 

•• if Bi is a negative literal ~G without solutions, a child ST( solution(G') ) 
for each solution G' of G. 

In addition to these, the node may have additional children due to cuts.  

                                                

1 I.e., such that goal(G,_,C,_) is true in the debugger theory. 
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•• if Bi is an atomic goal that didn't completely fail (because it occurs 
textually to the left of a cut that was reached during execution), a child ST( 
solution(Bi')) for each solution Bi' of Bi. 

•• if  Bi is a successful negative literal ~G occurring to the left of a cut that 
was reached during execution, a child ST( solution_set∅(G) ). 

It's easy to see that all propositions referring suspect trees still hold.  

Example Following is a (buggy) program to compute prime numbers: 
 
primes(Limit,Ps) :- integers(2,Limit,Is), sift(Is,Ps). 
 
integers(Low,High,[Low|Rest]) :- Low =< High, !,  
    M is Low+1, integers(M,High,Rest). 
integers(_,_,[]). 
 
sift([],[]). 
sift([I|Is],[I|Ps]) :- remove(I,Is,New), sift(New,Ps). 
 
remove(P,[],[]). 
remove(P,[I|Is],Nis) :- is_multiple(I,P), !, remove(P,Is,Nis). 
remove(P,[I|Is],[I|Nis]) :- remove(P,Is,Nis). 
 
is_multiple(I,P) :- 0 is P mod I. % bug: exchanged I,P 
 

For goal primes(4,P), it gives the solution primes(4,[2,3,4]), which is wrong because 
4 is not prime.Its AND tree (also the suspect tree, if there were no cuts in the 
program) follows: 

 

Figure 4.1: Suspect tree for a wrong solution 

The effect of cuts consists in adding some suspects, corresponding to the failures of 
calls to is_multiple: 
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is_multiple(3,2)

is_multiple(4,3)is_multiple(4,2)

 

Figure 4.2: A suspect tree, considering cuts 

→ 

4.1.4. The debugging framework for programs with cuts 

Having changed the oracle, as well as the bug instance and suspect tree definitions, 
no other changes are necessary! Suspect sets, suspect set refinement, bug instance 
search trees, and the different algorithms are all immediately usable once they are 
applied using the changed concepts above. 

Example Here's the debugging session using AD&Q in the HyperTracer 
debugger, for the suspect tree of the previous primes example. It starts with a 
complaint about the top goal solution, using one of the HyperTracer's “WHY” 
commands (cf. chapter 6): 

 

Figure 4.3: Debugging with cuts 
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The queries follow, each corresponding to a new goal behavior window: 

Goal behavior facet term Type Correct ? Comments 

primes(4,[2,3,4]) solution no top goal solution returns a list 

containing 4, which isn't prime 

sift([3,4],[3,4]) solution yes  

remove(2,[3,4],[3,4]) solution no 4 should be removed from the 

list 

remove(2,[],[]) solution yes  

remove(2,[4],[4]) solution no  

is_multiple(4,2) failure 

without 

solutions 

no And diagnosis is reached, “is” 

being a correct system predicate 

Table 4.2: Debugging with cuts 

Finally, the last query is made, by showing the following window: 

 

Figure 4.4: Showing a goal failure 

After the user again invokes “WHY” on the selected failure, the diagnosis is 
presented: 
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Figure 4.5: Showing an incomplete predicate 

 → 

4.2. Output side-effects 
Historically, logic programming has adopted a certain style of programming 
input/output interaction, typically through the use of destructible (i.e., non-
backtrackable) actions on character streams, in the middle of normal logical 
deductions - side-effects. Although current programming practice is starting to avoid 
this approach, separating as clearly as possible interface from purely deductive 
code, the traditional approach is still common. Even the current drafts of the future 
Prolog standard continue to ignore this distinction, relegating the issue to each 
implementation. 

For the sake of completeness, we'll expound a method to debug programs using 
output side-effects (such as write). In a subsequent section we'll discuss the 
serious problems involved in supporting also input side-effects (such as read). 
We'll tolerate input side-effects in a program, but we won't be able to find bugs 
related to their use. 

We'll start defining a trace of output side-effects for each goal, to which we call the 
goal's segment. We then define additional types of oracle statements, and hence of 
bug manifestations, bug instances, etc. This approach was first presented in [Pereira, 
1989 #118]. 
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4.2.1. Extending the oracle 

Let's define (output) segment of a goal to be the sequence of output side-effects 
(say, “writes”) in the order they  occurred in time, during that goal's execution and 
under1 it. Notice that a segment of a goal may be chronologically interleaved with 
parts of segments of other goals.  

Example Take the following Prolog program: 

p :- write(1). q :- write(3). 

p :- write(2). q :- write(4). 

top :- p,q,fail. 

The segment of top is [1,3,4,2,3,4]. The segment of p is [1,2]. Notice that the 
segment gives meaning to predicate definition top, which would be meaningless if 
we regarded this as a normal program, given that fail is always false. → 

The goal behavior for a call G is now extended with G's segment as an additional 
facet, represented in the debugger theory as a fact: 

• goal_segment(call(G),S). 

S is a unique representation of the output segment, which the debugger may later 
use to display to the user. For example, a unique segment name plus a list of the 
names of output side-effect calls, ordered according to their temporal order. For 
convenience, we'll also use a functional notation to denote the name (unique among 
goal behavior facets) of a segment for a goal G: 

• segment(G). 

In addition to wrong solutions and incomplete solution sets, an additional bug 
manifestation now exists: wrong output segment. Let's revisit the table of possible 
oracle statements for each facet type, for programs with cuts, and add the additional 
case: 

                                                

1 As defined previously. 
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Type Status Meaning 

solution correct solution is correct (wrt a particular goal call) 

solution incorrect solution is incorrect (wrt a particular goal call) 

solution set correct all solutions for the goal are correct (wrt it) and none is 
missing 

solution set incorrect the solutions for the goal are correct (wrt it), but some 
are missing 

segment correct goal produces correct output segment 

segment incorrect goal produces wrong output segment 

Table 4.3: Oracle framework for wrong output 

Notice that although output side-effects are a non-declarative feature, statements 
about goal segments are declarative: they're valid irrespective of the context of the 
goal. That was the reason for defining segments wrt output under a goal, rather than 
execution time, for example.  

Of course the notion of correct segment implies ordering among side-effects, which 
is dictated by a particular search strategy, such as Prolog's . For our purposes this 
issue is irrelevant: we assume that there's some ordering, of which the oracle is 
aware, but we need not know it.  

The customized oracle theory will be the same as for programs with cuts, but with 
an additional rule for subsumed statements: 

subsumed_facet(segment(G1),solution(G2))�  
 “Output of G1 identical to output of G2” � “call(G1) identical to call(G2)” 

4.2.2. An additional type of bug: wrong output 

Whereas for cuts we just had to change existing definitions, for wrong output we 
must define an additional type of bug, using the additional type of goal behavior 
facet.  
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A bad output predicate instance is a predicate instance matching a goal with wrong 
output, but such that all goal calls in the predicate instance body have fully correct 
behaviors. The requirement for “fully correct goal behaviors” guarantees that a bad 
output predicate instance is not assumed so because of some erroneous 
subcomputation (be it a wrong or missing solution). 

Example Consider the following buggy listing predicate, which is not inserting 
a newline at the beginning, but is instead inserting two between each write_user 
call: 

 
buggy_listing(G) :-  
    clause_user(G,B), 
    nl_user, % Bug: should be before the previous goal 
    write_user((G:-B)), nl_user, 
    fail. 
buggy_listing(G). 

For goal buggy_listing(remove(A,B,C)), where remove is one of the 
predicates in the primes example in the previous section, the matching predicate 
definition is a bad output predicate instance, because although its output is incorrect 
(cf. its output segment below), all subgoals match correct system predicates. 

 

Figure 4.6: A bad output predicate instance 

→ 
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4.2.3. Debugging erroneous output 

We'll now define a suspect tree for wrong output debugging. We'll simply define a 
suspect tree in the same format as the previous one for programs with cuts. It will be 
distinguished from that simply because the node names are disjoint: they're goal 
segment names, unique among all goal behavior facets (including solutions and 
solution sets). 

The suspect tree for the output segment of a goal T, ST(segment(T)), is defined as 
follows: 

• Each node has the name of a goal output segment facet, and is labelled with the 
predicate instance matching the goal. 

• The root is the node segment(T). 

• Let segment(G) be a node. Then for each goal call Gi in the predicate body 
instance for G, the node has a child ST(segment(Gi)). 

Given this new type of suspect tree, syntactically similar to those for wrong 
solutions and incomplete solution sets, the debugging framework developed so far 
can be used almost “as is”. With just a slight difference, patent in the following 
proposition. 

Proposition 10  Consider a goal G with wrong output, and that all goals in the 
computation for G have correct goal behavior facets, except for their segments 
whose status is undetermined. Then there is a bug instance in SS(segment(G)), a 
bad output predicate instance. 

Proof From the definition of SS(segment(G)), and by induction on the level of 
ST(segment(G)). → 

The only difference regarding side-effects-free programs is that debugging may start 
with a wrong output segment, but later may continue with a wrong solution, 
inadmissible goal call or incomplete solution set, if such are found by the oracle. 
Notice that additional information is required: whenever the oracle states a goal 
behavior to be correct, it must be aware that all its facets, including the segment, are 
correct. 

Example Following is a buggy program to pretty print a term, by indenting 
subterms: 

 
display_tree(T) :-  
    nl_user,  
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    display_tree(T,0). 
 
display_tree(T,Level) :- dt_leaf(T), !, 
    dt_write_spaces(Level), 
    write_user(T), 
    nl_user. 
 
display_tree(Tree,Level) :- 
    Tree=..[F|Args], 
    write_user(F), 
    nl_user, 
    L1 is Level+1, 
    dt_member(T,Args),  
    dt_write_spaces(Level), % bug: should be L1 
    display_tree(T,L1),  
    fail. 
display_tree(_,_). 
 
dt_member(T,[T|_]). 
dt_member(T,[_|Trees]) :- dt_member(T,Trees). 
 
dt_leaf(T) :- atom(T). 
dt_leaf(T) :- integer(T). 
 
dt_write_spaces(0). 
dt_write_spaces(Level) :-  
    Level >0, L1 is Level-1, 
    write_user('--'), 
    dt_write_spaces(L1). 

Goal display_tree(a(b,c(d),e)) succeeds but produces wrong output: 
a 
b 
c 
--d 
e 

It should produce instead: 
a 
--b 
--c 
----d 
--e 

Using the HyperTracer, it is possible to complain about the segment of a goal call, 
by applying AD&Q with a menu command on a segment window: 
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Figure 4.7: Complaining about wrong output 

And again: 

 

Figure 4.8: Debugging wrong output 
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Now a correct segment1: 

 

Figure 4.9: Debugging wrong output 

dt_member(A,[d]) has a (correct) empty segment, and dt_write_spaces(1) also has a 
correct segment: 

 

Figure 4.10: Debugging wrong output 

                                                

1 Whereas the HyperTracer fully supports AD&Q for wrong and missing solutions, and inadmissible 

goal calls, it currently requires the user to repeat the last “Why this segment” command (cf. “Correct 

and Continue” HyperTracer command description, chapter 6). 
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dt_leaf(c(d)) fails, producing a correct and empty output segment. After this 
statement, diagnosis is reached, after a total of 6 queries: the predicate instance 
matching goal display_tree(a(b,c(d),e),0) is a bad output predicate 
instance. → 

One last comment regarding the disadvantages of programs with side-effects. It will 
certainly become harder to apply the “Clever execution principle” put forward 
before (cf. chapter 2) to refine suspect sets without additional oracle knowledge. 
Different execution strategies, say different from Prolog's, will most likely violate 
the ordering of side-effects. This illustrates how a semantically misbehaved 
language feature is paid for with worse performance from a language environment 
tool - debuggers in our case, but also the case with partial evaluators for example 
([81]). 

4.2.4. Refined method 

In [69] we introduced a refinement allowing diagnosis to start with a smaller 
suspect set, the “refined output suspect set”, by using more detailed information 
from the oracle. In the present context, rather than defining an additional type of 
suspect set, this improvement can be seen as just another use of “intensional oracle 
statements” (cf. chapter 3).  

Consider a wrong output segment for a goal G, S. Suppose that this “wrongness” 
can be pinpointed by the oracle by localizing a continuous nonempty (output) 
subsegment S', such that no matter what the goal in the program for which S' is a 
subsegment, the goal's segment is wrong. Such a statement can be codified into an 
oracle rule, allowing goal segments unseen by the oracle to be found wrong. 

This defines side-effects which are erroneous “by themselves”, irrespective of the 
goal call.  

Example  Consider the following program, with top goal a: 

a :- b, c, write(1), e. 

b. 

c :- write(2), d, write(w). % w should be a number 

d. 

e. 
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The initial suspect set would be RSS( segment(a), {o_s(wrong,segment(a)} ) = {a/0, 
b/0, c/0, d/0, e/0}. But if the oracle theory OT includes instead a statement “any 
segment with non-integer output is wrong”1, the refined suspect set would be RSS( 
segment(a), OT) = {c/0,d/0}. → 

4.3. Other built-in predicates 
A built-in predicate is a predicate definition provided by the logic program executor 
as a “system predicate” or “built-in”, and therefore not explicit in the logic program 
itself. In addition to cuts and output side-effects, treated in the previous sections, 
we'll distinguish different cases according to the difference in character of built-ins. 

4.3.1. The built-in can be seen as an implicit program predicate 

This is the case for those builtins whose complete semantics can be described as an 
implicit program predicate definition, possibly with restrictions on its use given that 
typically such predicates are partially implemented. For example, arithmetic 
predicates are normally implemented as functions, and the user will get an error 
message if he tries to use them as full-fledged logical predicates: Y is 2*5+3 is 
properly evaluated, but 13 is 2*X+3 will cause an error message2. 

Examples of builtins in this category: arithmetic, univ, call, or in general any 
system predicate that could be simulated with an explicit program relation. Control 
meta-predicates, like Prolog's “if-then-else”, once, etc. also fall into this category 
(they can be implemented with predicate definitions using the aforementioned 
builtins). Counter-examples: side-effects (assert, retract, input/output) are not in this 
category. 

Debugging of programs with these features can be done by using our framework, by 
ommitting from suspect sets the (implicit) program components corresponding to 
the builtins. 

Example Take the following program, with wrong solution p(1,1). 

                                                

1 Codified with something like “o_s(wrong,segment(G))<-goal_segment(G,S), ¬ all_integers(S)”. 

2Constraint logic programming systems [42] avoid this particular problem, but that's not the point. 
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(1) p(X,Z):- Y is X+1, a_goal(Y,Z,G), call(G). 

(2) a_goal(A1,A2,g(A1,A2)) . 

(3) g(X,X). 

(4) is(2,1+1). % implicit system predicates 

(5) call(g(X,Y)) :- g(X,Y). 

 …  

The suspect set for p(1,1) will be just {(1'), (2'), (3')} (i' meaning the computed 
instance of clause i). → 

4.3.2. Built-ins accessing an “external world” with state 

This is the case of those builtins whose complete semantics cannot be completely 
expressed as logical predicates. For example, builtins for file I/O: the result of a call 
to get or read is dependent on the previous calls affecting the particular file 
stream. Another example: a retract call, whose result depends on previous assert and 
retract calls for that particular predicate. 

Although we treated output side-effects (cf. previous section), we have imposed the 
restriction that the external state change induced by output side-effects was 
irrelevant for the execution of the program. In other words, we assumed there was 
no causal connection between output side-effects and other predicates used by the 
program. 

“Declarative debugging” of programs using (also) input side-effects is unelegant if 
not impossible.  In order to classify goal behavior facets as correct or incorrect, the 
oracle would need to be aware of the subjacent external state, on which input side-
effect calls depend. 

Neverthless we'll concentrate on the specific case of program database side-effects 
(assert, retract, etc.), and come up with a partial solution, based only on 
declarative information. 

4.3.3. Program database side-effects 

We assume that buggy internal side-effects (assert, retract, and the like) have 
manifested themselves as some buggy top goal behavior. (Assuming otherwise 
would force us to extend our defined notion of “goal behavior” to include any goal 
execution's associated database state changes.) 
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Our basic idea is to extend the suspect sets, for those goal executions relying on 
predicate definitions modified by side-effects1, with the suspects for changes: the 
suspect trees supporting the (potencially inadmissible) side-effect calls. 
Accordingly, we extend  the previous definitions for suspect tree as below. This 
approach was first presented in [69]. 

First let us define the sequence of changes to a predicate definition P to be the 
sequence of database side-effect (assert, retract, abolish, …) goal call 
facets directly changing P.  

Example Consider the following program, and goal top. 

top :- assert(p(1)), assert(q(1)), fail. 

top :- assert(p(2)), retract(p(1)). 

The sequence of changes for predicate p/1 is [assert( p(1) ), assert( p(2) ), retract( 
p(1) )]. → 

We'll now consider a time ordering between goal behavior facets, corresponding to 
execution time. Consider an SLDNF-tree, visited in some predetermined order 
along its top goal execution. A side-effect goal call G potentially affects facet F if 
the node G (i.e., where G is selected) is visited by the executor “before F”, or more 
precisely before node F' as follows: 

• If F is a goal call occurring in clause instance C, F' is the node immediately below 
the clause link labeled with C. 

• If F is a goal solution, F' is the node after the first clause link in the solution path 
for F (i.e., the link labeled with the clause instance matching F) . 

• If F is a solution set for goal GF, F' is the last2 goal call under GF; in the special 
case where F' is G, G is still considered to be before F. 

• If F is a segment, the same as for solution sets. 

In other words, a side-effect potentially affects a goal behavior facet if it is executed 
before the interpreter uses the program component matching or containing the facet. 

                                                

1The assert and retract calls by themselves aren't problematic: their side-effects on other goals are. 

2 I.e., such that there's no other facet before it under GF. 
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We now present the extended suspect tree, in the form of a generic extension to the 
previous suspect tree definition (cf.previous section): 

• Let F be a goal behavior facet node in a suspect tree, matching (or occurring in, for 
the case of calls) predicate P, a predicate with a nonempty sequence of changes. The 
node has an additional child ST( call(G) ) for each side-effect call G potentially 
affecting  F (cf. above) and in the sequence of changes to P.  

For a goal execution which does not use predicates changed by assert/retract, the 
extended suspect tree simplifies to the nonextended one. 

This extension brings an interesting novelty: suspect sets for a bug manifestation in 
a top goal may include goals in other (previous) top goals.  

Example Consider the program 

(1) a :- b, asserta(h:-c,!,d). 

(2) h :- e. 

(3) e. 

(4)  b. 

Consider that goal a has been executed successfully, and that afterwards top goal h 
produces a wrong solution using clause (2). Then the suspect set is SS(h) = {(1), (2), 
(3), (4)}, and not just {(2),(3)}. → 

Suspect sets and debugging algorithms can simply be redefined based on the new 
suspect trees.There are two subtleties, however:  

• A (declarative) query about the admissibility of a call producing the asserting or 
retracting of a clause merely concerns its potential type-violating character. I.e. the 
user may notice a type violating subgoal in its body for example, but otherwise one 
cannot assume the clause to be “admissible” (in the sense of trusting there are no 
bug instances among the suspects supporting its assertion).  

• Furthermore, this approach does not take into account any relative order of side-
effects, as we don't find it reasonable to presuppose the user aware of that order.  
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Consequently, it is occasionally possible to obtain a vacuous diagnosis1. In any 
case, this approach seems an improvement over conventional tracing methods.  

                                                

1As an example, consider a buggy predicate, whose implementation requires asserting terms in a 

particular order. When later diagnosing the troubles it caused, the query to the oracle about the 

admissibility of the assert calls does not take into account their ordering: the oracle will find the 

assert calls “admissible”, so the debugger gets stuck with an identified wrong dynamically asserted 

clause. 



Miguel Calejo 

 

86 

5. Declarative Source Debugging  

We've been concerned with finding a bug instance, given an initial bug 
manifestation. Let's consider instead the problem of finding bugs in the source 
program, rather than bug instances in the suspect tree, leading to Declarative Source 
Debugging. As will be seen, in general this allows a diagnosis to be found with less 
queries to the oracle. 

The present chapter will explore this approach1, and combine it with the debugging 
framework developed so far. As a result we come up with declarative source 
debuggging algorithms, for all bug types and language features considered in the 
previous chapters. 

In order to do it, we'll simply adapt our previous framework, from now on refered to 
as “Declarative Execution Debugging”. The adaptation consists in a few additional 
definitions, and changes to the previous algorithms. However we will not require 
the use of different types of oracle statements.  

In addition to optimum algorithms, minimizing the maximum number of queries in 
any circumstance, we'll present two algorithms with an heuristic component, 
suggested by the new focus on program source rather than on program execution: 
the Narrow&Query algorithm, which attempts to reduce the number of suspects as 
much as possible with each single query; and the SECURE algorithm, which starts 
assuming that program components contributing to a correct result are always 
correct, and later lifts this assumption if proven inadequate. 

                                                

1 We first mentioned the opportunity for declarative source debugging in [68], and later explored it 

in [14] and presented it at the Workshop on Programming Environments, before ICLP'91, in Paris.  
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5.1. Motivation 
We start with some motivation for declarative source debugging. 

Example Follows a buggy “append” predicate with a wrong solution 
my_append([1,2,3,4,5],[6],[1,2,3,4,5,6,7,8]): 

(c1) my_append([],L,K). % bug: K≠L 

(c2) my_append([X|A],B,[X|C]) :- my_append(A,B,C). 

The and tree of this solution is (the labels on the left denoting the source clauses that 
matched the goals): 

(c1)

(c2)

(c1)

(c1)

(c1)

(c1)

D&Q

DSD  

Figure 5.1: A suspect tree for append 

The Divide and Query algorithm (or even GD&Q(∞)) would pick the middle goal 
node for querying the oracle, plus an aditional query or two until finding the bug.  
→ 

Now,  notice that under node my_append([],[6],[6,7,8]) there are only 
instances of clauses (one in fact: c2) which have no instances not under the node: 
not under the node there are only instances of clause c1. A declarative source 
debugger should query about that node first. Were it to be stated correct by the 
oracle, there would be a bug instance higher in the tree, in a region containing only 
instances of clause c1, and no additional queries would be needed; being wrong (as 
in fact it is), then clause c2 has a bug instance, and again no additional queries are 
needed.  
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Therefore, for this example and in the worst case, 2 queries are needed for a 
“declarative source debugger”, rather than the 4 for a “conventional declarative 
debugger”. (We count the initial incorrectness statement for the top node as a 
query.) 

This example suggests that while a conventional “declarative execution debugger” 
can find a bug instance with a number of queries logarithmic with the number of 
AND tree nodes, a declarative source debugger might be able to find a bug with a 
number of queries dependent on the number of source clauses in the program - a 
much more interesting prospect, since logic programs are apt to use recursion. 

5.2. Declarative source debugging defined 
We start by defining the “source suspect set”, SSS, from our previous suspect set 
SS. The source suspect set for a goal behavior facet F, SSS(F), is the set of all 
program components with computed instances in SS(F).  

Example The source suspect set for wrong solution 
my_append([1,2,3,4,5],[6],[1,2,3,4,5,6,7,8]) in the previous example is 
simply {c1,c2}; SS would be: 

{ 
my_append([1|[2,3,4,5]],[6],[1|[2,3,4,5,6,7,8]]):- 
 my_append([2,3,4,5],[6],[2,3,4,5,6,7,8]),  
my_append([2|[3,4,5]],[6],[2|[3,4,5,6,7,8]]):- 
 my_append([3,4,5],[6],[3,4,5,6,7,8]),  
...,  
my_append([],[6],[6,7,8]):-true  
} 

 → 

Example Let's revisit the display_tree example of the previous chapter. 
The suspect tree for the wrong output segment of goal 
display_tree(a(b,c(d),e)) was (although not shown) the following, with 
a total of 29 suspect nodes: 
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Figure 5.2: A suspect tree 

The source suspect set would simply be the set of 6 predicate definitions in the 
program ({display_tree/1, display_tree/2, dt_member/2, 

dt_leaf/1, dt_write_spaces/1}). → 

We can easily adapt previous propositions for suspect sets: 

Proposition 11  Given a bug manifestation T, its source suspect set SSS(T) 
contains a bug. 

Proof SS(T) contains a bug instance I, by proposition 1. Then the program 
component (bug) of which I is a computed instance is in SSS(T). → 

Unfortunately we cannot adapt proposition 3 directly: given a bug manifestation F 
and a node F' in ST(F) for which o_s(correct,F'), in general we can't ignore all 
program components in SSS(F'), because they may have suspect instances not in 
ST(F').  

But we can define “refined source suspect sets” indirectly. Given an oracle theory 
OT, and a bug manifestation F: 

A refined source suspect set, RSSS(F,OT), is the set of all program components 
with computed instances in RSS(F,OT).  

Proposition 12 Given a bug manifestation F and an oracle theory OT, 
RSSS(F,OT) contains a bug. 

Proof Follows directly from proposition 1 and the last definition.→ 
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5.3. Finding bugs 

5.3.1. Bug instance search trees revisited 

From a bug instance search tree (BIST) we can now define the corresponding “bug 
search tree”.  

The bug search tree for a bug manifestation T, given an oracle theory OT, is 
denoted by BST(T,OT), and is obtained from BIST(T,OT) as follows: 

• Consider a debugger node bist(F,OT'). If one of the sets RSSS(F,OT') is a 
singleton, delete all descendents of the node. 

In other words, whenever all suspects are instances of the same program 
component, make the node a leaf. Apart from this difference, BISTs and BSTs are 
identical.  

Example Following is a snapshot of BIST( solution( my_append( 

[1,2,3,4,5], [6], [1,2,3,4,5,6,7,8] )  ) ), showing the groups of 
nodes which collapse into a single BST leaf node. Notice how the branch after the 
lower query node (corresponding to the suspect node at the bottom of the 
my_append recursion chain) collapses into a single node, thus ponting out that 
suspect as the best to query about first. 
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Figure 5.3: A Bug Search Tree 

The rectangle at the top can be seen in more detail below (app1 abbreviating 
my_append(...) nodes matching clause c1, and app2 those matching clause c2): 
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Figure 5.4: Detail of a BST 

→ 

The next propositions sound familiar: 

Proposition 13 Given a bug manifestation T and an oracle theory OT, a 
program component is a bug if a computed instance of it matches the goal behavior 
facet in a leave of BST(T,OT). 

Proof All leaves are debugger nodes, because bug nodes always have at least one 
child. If a debugger node bist(F,OT') has no children, then (one of the sets) 
RSSS(F,OT') has a single element, the program component C whose instance 
matches F. Since F is a bug manifestation, by definition of debugger node, then by 
proposition 12 C is a bug.→ 

Proposition 14 Given a bug manifestation T and an oracle theory OT, there 
are no certified bugs with computed instances matching goal behavior facets in non-
leave nodes of BST(T,OT). 

Proof Take a debugger node bist(F,OT') with descendents. Since the node is not a 
leaf, #RSSS(F,OT') > 1 for all RSSS sets: there is more than one suspect, hence we 
can't arbitrate one of them to be the diagnosis. → 
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5.3.2. The basic algorithm 

From the basic declarative execution debugging algorithm, that uses the bug 
instance search tree, we can define a new basic algorithm for declarative source 
debugging, by using the bug search tree instead. Notice that only steps 1 and 2 are 
different. 

1. Given a bug manifestation T and oracle theory OT, compute 
BST(T,OT). Make the root the current node. 

2. If the current node is a leave bist(G,OT'), return as diagnosis the 
single element of any RSSS(G,OT') which is a singleton. 

3. Select some child of the current node, a bug node query(Fi,OTi).  

4. Query the user about the correctness status S of goal behavior facet 
Fi (“correct or incorrect ?”) and continue at step 2 with bist( Fi, OT 
≈ u_s(S,Fi) ) as the current node. 

Just as the original declarative execution debugging that searches bug instances, the 
present algorithm should not look very “intelligent” to a user, because it typically 
makes much more queries than necessary. But it serves as a conceptual basis for the 
following improved ones. 

5.3.3. “Intelligent” algorithm 

The discussion and changes to the basic declarative execution debugging algorithm 
apply directly - only step 3 is redefined: 

3'. Select a child of the current node, a bug node query(Fi,OTi), such 
that the maximum cost for any diagnosis query sequence starting in the node 
is minimum.  

5.4. Search heuristics 
While the number of execution suspects, #RSS, was a diagnosis cost bound, #RSSS 
is not. The query cost continues to depend on the execution's suspect tree: clearing a 
source suspect instance does not necessarily clear all instances of that source 
suspect. 
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We now define “collapsed” suspect tree, taking into account the relationship 
between suspect tree nodes and source program components. This will suggest a 
lower diagnosis cost bound, to be used as a search heuristic. 

The collapsed suspect tree for a goal behavior facet F, CST(F), is obtained from the 
suspect tree ST(F) as follows: 

• Consider all trees TC in ST(F), with root C', and such that all nodes in TC 
match the same program component C. 

• Let b be the maximum branching of ST(F). Replace TC by a single node 
C', with a child for each node that is an immediate descendent of a node in 
TC, except in the following case. 

• If C' has more than b children, remove enough instances of C from TC such 
that the number of children of C' becomes ≤b. 

It is easy to see that if SSS(F) contains a bug, the set of program components with 
instances in CST(F) also does: the “collapsed” nodes are additional instances of 
program components, irrelevant from the point of view of finding bugs. 

Example Let's revisit the buggy prime number program, giving names to 
program components, clauses (ci) and predicate definitions (pdi): 

 
(pdA) 
(c1) primes(Limit,Ps) :- integers(2,Limit,Is), sift(Is,Ps). 
 
(pdB) 
(c2) integers(Low,High,[Low|Rest]) :- Low =< High, !,  
      M is Low+1, integers(M,High,Rest). 
(c3) integers(_,_,[]). 
 
(pdC) 
(c4) sift([],[]). 
(c5) sift([I|Is],[I|Ps]) :- remove(I,Is,New), sift(New,Ps). 
 
(pdD) 
(c6) remove(P,[],[]). 
(c7) remove(P,[I|Is],Nis) :- is_multiple(I,P), !, remove(P,Is,Nis). 
(c8) remove(P,[I|Is],[I|Nis]) :- remove(P,Is,Nis). 
 
(pdE) 
(c9) is_multiple(I,P) :- 0 is P mod I. % bug: exchanged I,P 
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Following is ST(solution(primes(4,[2,3,4]))), considering the effect of cuts, and 
showing the names of the source program components matching suspects. The 
selected nodes at the left are the only ones collapsing into a single node in 
CST(solution(primes(4,[2,3,4]))); although other trees of nodes matching the same 
program component exist, their collapse would cause the overall maximum tree 
branching factor to increase, hence violating the CST definition. 

is_multiple(3,2)

is_multiple(4,3)is_multiple(4,2)

c2

c2

c2

c3

pdE

pdE
c6

c8

c8

pdE

c1

c6 c6

c8

c4

c5

c5

c5

 

Figure 5.5: A Collapsed Suspect Tree 

 → 

Given an oracle theory OT, and a bug manifestation F, the collapsed refined suspect 
tree, CRST(F,OT), is defined as CST(F), but based on RST(F,OT) instead of on 
ST(F) . 

A better upper bound on the number of queries can now be established. Given a bug 
manifestation T and an oracle theory OT, the form-aware bound on source 
diagnosis cost, hfs(T,OT), is defined as follows: the smallest value blogb n (for all 
trees CRST(T,OT)), where b is the maximum number of children of any node in 
CRST(T,OT), and n is the number of nodes in the tree. 

Proposition 15 Let T be a bug manifestation, OT an oracle theory, and 
bist(T,OT) the root node of BST(T,OT). The maximum diagnosis query cost1 for a 
bug in BST(T,OT) is less or equal to hfs(T,OT). 

Proof By applying the Divide and Query algorithm on the collapsed suspect tree, a 
bug instance will be found with b logb n queries, for the syntactically identical case 
where the tree is an AND-tree. The only difference lies in the nature of the 
diagnosis: in addition to a bug instance, it may also consist in a “collapsed” subtree, 
but in any case uniquely identifying a buggy program component. → 

                                                

1 I.e., following a strategy that attempts to minimize cost. 
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We now define a new algorithm, Source Divide & Query (N), or SD&Q(N), using 
this upper bound and inspired on the basic declarative source debugging algorithm 
above. It is similar to Generalized Divide & Query(N), except for the use of bug 
search trees and collapsed suspect trees: 

3''. Consider the set SN of debugger node descendents bst(F,OT) of the 
current node, that are N plies (2N levels) below in the tree, or higher up if 
they're leaves.  Select a child of the current node, a bug node Q, minimizing 
the maximum hfs(F,OT) for any descendent of Q in SN.  

Assuming that bugs are as interesting a diagnosis as bug instances, how better is 
SD&Q(N) than GD&Q(N) ?  

The answer depends on the program and computation at hand. First, it is never 
worse. If no “suspect collapsing” is permited, because instances of program 
components are scattered around the suspect tree, SD&Q(N) degrades to GD&Q(N). 
If instances of program components are concentrated in regions of the suspect tree, 
SD&Q(N) is manifestly better. But if instances of a program component are 
concentrated in a region of the suspect tree, but are interleaved with another's, the 
advantage vanishes.  

We didn't investigate whether program properties definable from static analysis may 
help quantify the query performance. 

5.5. Domain heuristics 
Just like for declarative execution debugging, and in addition to search-related 
heuristics, we may use information about the probability of an user answer. If, for a 
goal behavior facet, we can assign different probabilities for the user stating it 
correct or incorrect, we can adapt SD&Q(N) accordingly, to minimize the expected 
diagnosis cost. To the result we call Probabilistic Source Divide and Query(N), or 
PSD&Q(N): 
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3'''. Consider the set SN of debugger node descendents bst(F,OT) of the 
current node, that are N plies (2N levels) below in the tree, or higher up if 
they're leaves.  Select a child of the current node, a bug node Q, minimizing 
the expected1 hfs(F,OT) for any descendent of Q in SN.  

5.6. Source-directed diagnosis 
The previous algorithms used no domain information at all: they followed directly 
from the redefinition of the debugging problem - find a bug, rather than a bug 
instance. We now develop less conservative algorithms, which are based on 
additional assumptions involving the relationship between source program and 
computation. 

5.6.1. Narrow & Query 

Since debugger users are typically impacient, providing as much feedback as 
possible to them is important. An expert user is likely to skip the remaining of a 
diagnosis session, if he's given interesting information from which he can jump 
quickly to some conclusion. 

Whereas in declarative execution debugging the suspect sets contain computed 
program component instances, in declarative source debugging suspect sets contain 
program components. This suggests that a debugger can give feedback to the user 
by presenting him the current suspect set, in the original source form. 

We now present an algorithm for impacient users, based on these ideas. It is akeen 
to the Abstract Divide &Query algorithm, except that it “narrows” sets of program 
components, instead of “dividing” suspect trees. 

The Narrow & Query algorithm, or N&Q, is defined from the basic declarative 
source debugging algorithm, as follows: 

3'''. Select a child of the current (debugger) node, a bug node 
query(Fi,OTi) with two (debugger node) children bist(A,OTA) and 
bist(B,OTB), such that max{ #RSSSSMALL( A, OTA ), #RSSSSMALL( B, 
OTB ) } is minimum.  

                                                

1 By taking a weighted average of the estimative function in all nodes N  plies below (or higher if 

leaves), with the combined probabilities of the query/answer sequences until them. 
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Given an oracle theory OT and a bug manifestation F, a smallest refined source 
suspect set, RSSSSMALL(F,OT), is any of the RSSS(F,OT) sets minimal regarding 
inclusion. 

The algorithm chooses a query which minimizes the next source suspect set, 
irrespective of it being a good choice or not in the long term, when the total cost of 
additional queries is accounted for.  

Example Following is a buggy partition predicate, producing wrong solution 
partition([1,5,3,4,2], 3, [1,3,2], [x,x]): 

 
(c1) partition([X|A],Y,B,[x|C]) :- Y<X, partition(A,Y,B,C). % bug:x 
(c2) partition([X|A],Y,[X|B],C) :- Y>=X, partition(A,Y,B,C). 
(c3) partition([],_,[],[]). 

And here's ST(solution(partition([1,5,3,4,2], 3, [1,3,2], [x,x]))). The numbered 
arrows on the left show the sequence of queries until diagnosis with 

Narrow&Query; the nodes marked with AD&Q  constitute the query sequence for 
AD&Q (there's no improvement with GD&Q(N)). 

c1

c2

c3

c2

c1

c2

1

2

3

AD&Q

AD&Q

AD&Q

AD&Q

 

Figure 5.6: Debugging with Narrow&Query 

The first query after the top goal solution, about (correct) solution 
partition([2],3,[2],[]), is chosen because it is one of the two queries minimizing the 
cardinality of the remaining source suspect set, 2 at most.  
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The “short-sighted” nature of this algorithm, and its eagerness to immediately 
minimize source suspect set cardinality, are manifest in this example. The other 
possible first query would be about (correct) solution partition([],3,[],[]), also 
guaranteeing a remaining cardinality of 2. However, the suspect tree would be such 
that it would be impossible to guarantee that the number of source suspects 
decreased, because of the interleaving of nodes matching c1 and c2: 

c1

c2

c3

c2

c1

c2

 

Figure 5.7: A case against Narrow&Query 

 → 

So although each step of Narrow & Query may give useful information to a 
programmer, say by selecting the program source to point the current suspect set, 
another approach is needed for guaranteeing that a diagnosis can be found with 
advantage regarding declarative execution debugging algorithms. 

5.6.2. The SECURE algorithm 

We now move to another algorithm, which attempts to balance the use of source 
information, the use of a domain-dependent but intuitive assumption about bug 
instances, and some consideration for the worst case situations where declarative 
source debugging degrades into declarative execution debugging. 

The algorithm is based on the idea of adopting an assumption until reaching an 
“assumption diagnosis” which is validated, or otherwise retracting the assumption 
and falling back into Generalized Divide and Query(N). For this reason it is called 
SECURE(N). We call “SECURE” to algorithm SECURE(1). 
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The SECURE assumption is the following. Let F be a correct goal behavior facet; 
then the program components in SSS(F) are assumed correct, and are omited from 
all current source suspect sets used by the debugger. In other words, a program 
component with a computed instance under a correct goal behavior facet is assumed 
correct. 

Let ACC(T) be the set of Assumed Correct Components given oracle theory T. 

SECURE(N) follows: 

1. Given a bug manifestation T and oracle theory OT, consider 
BST(T,OT) and its root node bist(T,OT). 

2. If the T node is a leave, return as diagnosis the program component 
in any singleton RSSS(T,OT). 

3.1 If ACC(OT)€RSSS(T,OT), then select a child query(Fi,OTi) of the 
T node according to step 3 of GD&Q(N) (cf. section “Suspect tree form 
factors” in chapter 2), with bist(T,OT) as current node and ignoring the 
SECURE assumption; proceed at step 4 below. 

3.2 else if #[RSSS(T,OT)\ACC]=1 for some RSSS then  

Let D be the (only) program component in RSSS(T,OT)\ACC; D is 
the “assumption diagnosis”. Now attempt to validate it: 

Find the instance DI of D in one of the smallest RSS(T,OT) sets for 
which there are more statements by the oracle (be it about the 
predicate head or body goals); if there's more than one such instance, 
matched by goal behavior facet F, choose the one with the smaller 
RSS(F,OT) - because we expect F to be incorrect. 

Query about the remaining parts of DI, until one of the following 
conditions arises: 

- if DI is a bug instance: terminate returning DI as the diagnosis;  

- if a new bug manifestation B was found among the goals in DI's 
body: continue at step 1 with T=B. 

3.3 else ( RSSS(G,OT')\ACC has always more than one element) 
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Select a child query(Fi,OTi) of the T node, minimizing | #[ RSSS( Fi, 
OTi )\ACC ] - #[RSSS( T, OT )\ACC] / 2 |, considering any of the 
smallest RSSS sets; if this criterium selects more than one node, 
choose from these the best according to step 3 of GD&Q(N), with 
bist(T,OT) as current node and ignoring the SECURE assumption. 

4. Query the user about the correctness of goal behavior facet Fi, add 
the answer to the oracle theory OT as a user statement, obtaining OT', and 
continue at step 2 with bist(Fi,OT') as the current node. 

Like the previous algorithms, SECURE descends through the bug search tree until a 
diagnosis is found. 

Normally SECURE returns a bug diagnosis using step 2, eventually after validating 
it (step 3.2). But, for impacient users, SECURE can optionally skip the validation 
step, and provide immediate feedback by presenting the assumed diagnosis. 

We now show the need for the query overhead of ��� the validation step (3.2): 

Example 

r(X,Y) :- p(X), p(Y).  

p(X):-q(X). % Bug: clause is too general 

q(a).  q(b). 

Take the intended model to be {r(a,a), p(a), q(a), q(b)}. Therefore, for wrong 
solution r(a,b) there's a bug instance p(b):-q(b), an instance of the second source 
clause. Now, when the oracle states solution p(a) to be correct, SECURE will 
assume the second clause to be correct. Its diagnosis validation stage checks the 
validity of the assumption, and in this case retracts it, falling back on GD&Q (step 
3.1). 

5.6.3. The SECURE assumption 

How good is the SECURE assumption ? It is inspired in an heuristic used by human 
debuggers: if a correct computation uses a program component, it is considered 
correct. Given the difficulty in analysing objective pros and cons, due to the 
diversity of logic programs, we experimented with SECURE to see if the 
assumption diagnosis are valid. 

Following is a table with the maximum number of queries necessary until diagnosis, 
for each of the examples (taken from [14], where all listings and tree figures can be 
found). The  initial bug manifestation is counted as a debugger query. 
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Example #SS(Top) #SSS(Top) AD&Q 

queries 

SECURE, part I Validation 

Partition1 6 3 4 2 1 

Insertion sort2 17 5 5 3 0 

Quicksort 26 7 6 4 2 

Simple rule engine3 8 4 4 3 0 

Sieve of 

Erastosthenes4 

19 8 6 4 0 

Table 5.1: Evaluating SECURE 

The first column gives the number of nodes in the suspect execution tree for the 
wrong solution, and the second the number of source clauses matching goals in it. 
These are the initial numbers of suspects for declarative execution debugging and 
for declarative source debugging, respectively. The “SECURE, part I” column 
contains the number of queries until obtaining an assumption diagnosis.  

The rightmost column contains the additional diagnosis validation queries for 
SECURE. In a practical programming environment, as soon as the debugger has a 
diagnosis to be validated it can display it to the user, so that the user can decide on 
whether to accept the diagnosis without validation or to answer additional queries. 

In this set of examples the SECURE assumption was always successfully validated. 

Example Here's the quicksort program referred to in the table above: 
 
(c1) qsort([],[]). 
(c2) qsort([X|L],L0) :-  
   partition(L,X,L1,L2),  
   qsort(L1,L3),  

                                                

1 Cf. previous example in the “Narrow & Query” section. 

2 From [83], p.50 

3 From [7]. 

4 From [4]. 
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   qsort(L2,L4),  
   qappend([X|L3],L4,L0).  % bug: X should be “inserted” in the 2nd 
arg. 
(c3) partition([X|L],Y,[X|L1],L2) :- X<Y, partition(L,Y,L1,L2). 
(c4) partition([X|L],Y,L1,[X|L2]) :- Y=<X, partition(L,Y,L1,L2). 
(c5) partition([],X,[],[]). 
(c6) qappend([X|L1],L2,[X|L3]) :- qappend(L1,L2,L3). 
(c7) qappend([],L,L). 

And here's the suspect tree for wrong solution qsort([2,3,1,5],[2,1,3,5]), 

with numbered arrows pointing the SECURE query sequence, and D&Q  the 
Divide&Query (or AD&Q, in this cut and negation-free program) queries. 
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Figure 5.8: Example of AD&Q vs SECURE 

 → 

5.7. Complexity issues 
Source Divide&Query(1) needs at most as many queries as GD&Q(1), when 
program component instances are scattered around the (execution) suspect tree: b 
logb n, where n is the number of execution suspect tree nodes and b the maximum 
branching factor of the tree.  

But if instances of the same component are grouped together in (disjoint) suspect 
tree regions, the number of queries will be dramatically less: it will be that of 
GD&Q(1) over the collapsed suspect tree. If C is the number of program 
components in the source suspect set, the number of queries will be O(log C), rather 
than O(log n). 

The Narrow&Query algorithm “hopes” that program component instances are 
grouped together, and simply tries to elliminate as suspects half of the current 
source suspects; it corresponds to Abstract Divide & Query1 over the collapsed 
suspect tree, and therefore will also be O(log C) in the number of queries, 
eventually with a small query overhead regarding SD&Q because it ignores tree 
form factors. If components are not grouped together, the query performance may 
degrade to O(n). 

The SECURE algorithm adopts an assumption which is equivalent in practice to 
having program component instances grouped together. Therefore it is able to 
eliminate about half of the source suspects in a single step like Narrow&Query, if 
the assumption is valid. So in the worst case, when the assumption is found invalid 
and SECURE falls back into GD&Q, the number of queries will be2 O(log C+log 
(n-C)).  

                                                

1 i.e., GD&Q(1) ignoring tree form factors. 

2 Any query done before the SECURE assumption is found invalid refines at least one execution 

suspect, hence the component log(n-C). 





Part II: Implementation 
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6. The HyperTracer environment  

We've implemented several experimental debugger prototypes, incorporating our 
evolving theory. In this chapter we describe our latest and most complete1, the 
HyperTracer2.  

Before we do so, we summarize part I of this thesis, to better see where the 
prototype stands. We then state our design objectives, and say what's left out of the 
current implementation. An overview of the HyperTracer architecture, an example 
session and a description of the available commands follow. 

                                                

1Running over C-Prolog, using the MacLogic environment on Apple Macintosh computers [3]. An 

older version runs on the ALPES-Prolog environment, on X-Windows workstations [2].  

2 We dub “HyperTracing” the combination of traditional execution tracing, across different program 

executions through common database side-effects, browsing of the effects of I/O predicates, program 

source browsing, and navigation with the help of declarative debugging algorithms. 



A Framework for Declarative Prolog Debugging 
 

109 

6.1. Theory Summary 
Here's our declarative execution debugging theory in a nutshell. As we move to 
the right on the table, cells denote additions or changes to those to their left. 

 

Language: Normal programs Partial 
relations 

Cuts Output side-
effects 

Database 
side-effects 

Goal 
behavior 
facets that 
the user sees 

Solution, solution set; 
variables in terms are 
universal logical 
variables 

Call Terms are 
just 
patterns: 
variables 
are not 
logical  

ibidem, plus 
output 
segment 

 

Bug 
instances 

Wrong clause 
instance; incomplete 
predicate instance 

Inadmissible 
subgoal 
instance 

 Bad output 
predicate 
instance 

 

Rules in the 
oracle theory 

User statements are 
oracle statements; 

oracle consistency;  

solution sets stated 
incomplete contain 
only solutions stated 
correct; 

generic subsumption 
rules; 

NAF rules; 

subsumption among 
solutions; 

goal with a solution 
identical to it can't 
have an incomplete 
solution set 

The 
correctness of 
solutions and 
solution sets 
of 
inadmissible 
goals is 
undefined; 

subsumption 
among goal 
calls 

A solution 
or call 
“subsumes” 
another  
only if it is 
identical 
(modulo 
variable 
renaming) 

Identical 
output 
“subsumption” 
rule 

 

Suspect tree 
node types 

Solution, solution set Call  Output 
segment 

Additional call 
nodes for 
relevant side-
effect goals 

Table 6.1: Theory summary for declarative execution debugging 

For all language features discriminated in the columns above, suspect sets, bug 
instance search trees and algorithms are identical, relatively to each suspect tree. 
The main algorithms for declarative execution debugging are: 
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• AD&Q: Abstract Divide&Query, essencially Shapiro's Divide & Query abstracted 
from suspect type, and also ignoring tree form. Minimizes the number of suspects 
after a single query in the worst case, not the number of queries. 

• GD&Q(N): Generalized Divide&Query with N-ply lookahead, using tree form 
factors. Minimizes the number of queries necessary for diagnosis, in the worst case. 

• PD&Q(N): Probabilistic Divide & Query with N-ply lookahead, using information 
about the probability of suspect tree nodes being correct/incorrect. Minimizes the 
expected number of queries necessary for diagnosis, in average. 

For Declarative Source Debugging, the table above is valid except for the “bug 
instances” row, substituted now by a “bugs” row (because we search for bugs rather 
than bug instances): 

 

Language: Normal 

programs 

Partial 

Relations 

Cuts Output side-

effects 

Database 

side-effects 

Bugs Wrong clause, 

Incomplete 

predicate 

Inadmissible 

subgoal 

 Bad output 

predicate 

 

Table 6.2: Theory changes for declarative source debugging 

Source suspect sets, bug search trees and algorithms are also identical for all 
languages, relatively to each suspect tree. The main algorithms for declarative 
source debugging are: 

• SD&Q(N): Source Divide&Query with N-ply lookahead, using tree form factors 
defined over collapsed suspect trees (suspect trees where adjacent nodes, that are 
instances of the same program component, are collapsed into a single node). 
Minimizes the number of queries necessary for a (source) diagnosis, in the worst 
case. 

• PSD&Q(N): Probabilistic Source Divide & Query with N-ply lookahead, using 
information about the probability of suspect tree nodes being correct/incorrect. 
Minimizes the expected number of queries necessary for diagnosis, in average. 

• N&Q: Narrow & Query. Minimizes the number of (source) suspects left after a 
single query. 
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• SECURE(N): SECURE algorithm, eventually reverting to GD&Q(N) in the final 
phase. Similar to N&Q initially, but assuming that a program component with a 
computed instance under a correct goal behavior facet is correct. If the assumption 
is found invalid, reverts to GD&Q(N). 

6.2. Design goals 
This was our main goal during the implementation work: 

• To exemplify the present debugging approach, implementing most of the theoretic 
framework in a modular prototype written in Prolog, offering an easy to use 
graphical interface. 

• To adopt an implementation design allowing in the future debugging of large 
computations (cf. chapter 7). 

We consider the user interface issue very important. Previous declarative debuggers 
made the user just a passive oracle: 

Interpreter

PROGRAM

DIAGNOSER

User

ORACLE

 

Figure 6.1: Old interface paradigm 

This corresponds to a rigid control cycle: 

• select a goal behavior facet using the diagnosis algorithm 

• query the user 

• continue if not a diagnosis  
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We aimed at giving the user more control, allowing him to shift between his oracle 
role, with the debugger working as an “automatic pilot” navigating the execution, to 
a more conventional role where the user is the pilot himself, more like in non-
declarative debuggers: 

Execution 
machine

PROGRAM

User

User 
interface

ORACLE

DIAGNOSER

 

Figure 6.2: New interface paradigm 

Rather than being queried in sequence about goal behavior facets, the user now 
(optionally) states declarative information about them, and may eventually require 
the debugger to show him another “interesting” goal facet. The debugger will show 
it to him, or a diagnosis if possible, but will not force the user to continue answering 
queries. In other words, the rigid control cycle above is broken into separate pieces. 

The debugger now must have the ability to follow, simultaneously, different 
“debugging threads”, in the sense that the user can give statements as oracle, or ask 
to examine a particular region of the execution (i.e., using a non-declarative 
command), or ask the debugger to exhibit an interesting node (by applying a single 
iteration of any of the declarative debugging algorithms1) - all this in arbitrary order, 
and potentially for different top goals. 

                                                

1The user may even use different debugging algorithms while debugging the same top goal. Their 

common ground is the evolving oracle theory, which is used in all algorithms. 
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This looser style of interaction combines well with a direct manipulation graphical 
user interface, where goal behavior facets, oracle statements and other concepts can 
be represented by an explicit graphical object. Most user commands can therefore 
be given using menus, applied to a selected object. 

6.3. Functionality, vis-à-vis the theory 
Here's an overview of the HyperTracer, regarding its declarative debugging 
capabilities (cf. theory summary tables above).  

Language features supported: definite programs, partial relations1, cuts, output 
and internal database side-effects; negative literals are not explicitly supported, 
since nearly all Prolog systems implement NAF with cut. Definite Clause 
Grammars. 

Goal behavior facet types: goal calls, solutions, failure information (i.e., “solution 
set”) and output segment. 

Oracle theory rules: oracle consistency; type specifications for some system 
predicates; “subsumption” among identical goal behavior facets (but not full 
subsumption; and furthermore, it is being used only to avoid redundant queries, not 
to discover new bug manifestations - each oracle statement originates a single 
refined suspect set, which simplifies the implementation).  

Declarative Execution Debugging algorithms: AD&Q, or GD&Q(1) without tree 
form factors2; a top-down algorithm3. Support for diagnosis explanation and oracle 
statement retracting. 

Declarative Source Debugging algorithms: N&Q and SECURE. 

In addition to these declarative debugging features, the HyperTracer has various 
execution browsing primitives, described below.  

                                                

1 The HyperTracer currently supports a small set of system built-ins in user programs; this set can be 

easily enlarged simply by adding entries (clauses) to an HyperTracer global table. 

2 Therefore similar to Shapiro's Divide and Query algorithm ([83], page 44), but for all bug types. 

3 A generalized version of the basic top-down algorithm of [4], here applied to any suspect tree. 
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6.4. Architecture 
Following is the global architecture of the HyperTracer debugger:  

Top goal
execution

representation • Diagnoser
• Manual navigator

…

Top goals

Execution
Machine

Refinement

 

Figure 6.3: HyperTracer architecture 

User goals are executed by the “execution machine”, a combination of preprocessor 
+ runtime debugger predicates, written in Prolog, that stores partial information 
about the execution in the Execution Database - a set of Prolog relations. The 
diagnosis and inspection mechanisms use this information, ignoring the details of 
execution control.  

In order to save storage space, only a partial execution representation is kept. 
Whenever addidional information is necessary, say after the debugger has discarded 
a bunch of suspects, the Execution Machine is asked to recompute some particular 
subtree and store additional goal nodes, thus refining the execution database 
information (cf. next chapter). Side-effect goals are not repeated during 
recomputations, nor are subcomputations with stored roots, since their results are 
stored lemmas. 

The user interface is based on an object-oriented subsystem also implemented in 
Prolog, the HyperInterface (described in the “Implementation Issues” chapter). 
Debugger entities, such as goal behavior, segment, oracle statement, etc. correspond 
to HyperInterface class definitions and are visualized as HyperInterface objects. 
User commands are treated as messages to the methods in the class definitions. 
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6.5. Example debugging session 
We'll take a tour with the HyperTracer. Consider the following (buggy) definite 
clause grammar preprocessor1: 
 

transform( (A-->B), (NA :- NB), L1,Ln) :- !,   

    transform(A,NA,L1,Ln), transform(B,NB,L1,Ln). 

transform( (A,B), (NA,NB), L1,Ln) :- !,  

    transform(A,NA,L1,L2), transform(B,NB,L2,Ln). 

transform( [Terminal] ,true, [Terminal|L], L ) :- !.  

transform( A, NA, L1, Ln ) :-  

    A=..[Functor|Args], my_append(Args,[L1,Ln],NArgs), 

NA=..[Functor|NArgs]. 

 

 

my_append([],L,L) :- !. 

my_append([X|L1],L2,[x|L]) :- my_append(L1,L2,L).   %Bug: x instead of X 

 

load_grammar([Rule|Rules]) :- !,  

    transform(Rule,Clause,_,_), assert_user(Clause), load_grammar(Rules). 

 

load_grammar([]). 

 

a_phrase(G,L,Remaining) :- transform(G,NG,L,Remaining), NG. 

assert_user is the HyperTracer-supportted assert predicate.  

After loading this program with the HyperTracer (so that it becomes preprocessed 
and ready for debugging), we load a grammar with the following top goal, executed 
under the HyperTracer: 
 

?- tg( % HyperTracer command to execute a top goal 

load_grammar([  

(s(sentence(N,V)) --> np(N),vp(V)), 

 

(np(noun_phrase(D,N,R)) --> det(D), n(N), optrel(R)), 

(np(noun_phrase(P)) --> pn(P)), 

 

(vp(verb_phrase(V,N)) --> tv(V),np(N)), 

(vp(verb_phrase(V)) --> iv(V)), 

 

(optrel(relative)), 

                                                

1 The HyperTracer has its own (correct!) DCG preprocessor, plus an oracle pretty-printing facility 

(cf. “Intensional oracle statements”, chapter 3). Here we're using an incorrect preprocessor, running 

as an user program, to show the HyperTracer dealing with database side-effects.  
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(optrel(relative(V)) --> [that], vp(V)), 

 

(pn(mc) --> [miguel]), 

(pn(lmp) --> [luis]), 

 

(iv(debug) --> [debugs]), 

 

(tv(use) --> [uses]), 

(tv(debug) --> [debugs]), 

(tv(contain) --> [contain]), 

 

(det(a) --> [a]), 

(det(a) --> [some]), 

(det(all) --> [all]), 

 

(n(debugger) --> [debugger]), 

(n(program) --> [programs]), 

(n(bug) --> [bugs]) 

]) ). 

And now that the grammar is loaded, let's try to parse a phrase, by executing 
another top goal: 
 

?- tg( a_phrase(s(Semantics),[miguel,uses,a,debugger,that,debugs],[]) ). 

The parsing succeeds, but the first solution is incorrect. The Semantics argument is 
returning a free variable, whereas it should return a parse tree: 
 

Semantics = _106 

yes 

Enter the HyperTracer. Here's its window with the top goals executed under the 
HyperTracer (in abridged form, with '…' in place of very large terms): 

 

Figure 6.4: Top Goals window 
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By double-clicking on the a_phrase goal to inspect its behavior, we get its goal 
behavior window1: 

 

Figure 6.5: A Goal Behavior window 

Three goal behavior facets are shown: the goal CALL, the 1st solution, and 
information about the solution set, or in this case, lack of it: since we didn't ask 
more solutions to the Prolog top level shell, after we detected the first to be wrong, 
the goal had no more chances to produce more, and hence was skipped on 
backtracking by the Prolog top level shell: no point in complaining about missing 
solutions! 

Let's try to find a reason for the incorrect solution. We'll use the Narrow&Query 
declarative source debugging algorithm, using the SECURE assumption: 
 

?- use_SECURE_assumption. 

yes 

                                                

1 Goal behavior facets that are partially obscured can be made visible by demand; the cosmetics of 

the HyperTracer interface needs some improvements, which are naturally independent of the 

debugger functionality… cf. “HyperInterface” section, “Implementation Issues” chapter. 



Miguel Calejo 

 

118 

After having selected the solution facet in the previous window, we ask WHY the 
solution was produced by using the “WHY, N&Q” command in a menu (meaning, 
“use the N&Q algorithm to diagnose the cause for the incorrect solution”) and the 
HyperTracer selects the next goal solution facet: 

 

Figure 6.6: Showing a solution 

Again, the selected solution is incorrect ('x' is not a parsing tree), so we continue 
with “WHY, N&Q”: 

 

Figure 6.7: Showing a solution 
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And again: 

 

Figure 6.8: Showing a solution 

The Hypertracer now has isolated what might be considered a diagnosis. But it 
knows better: 

 

Figure 6.9: Debugging across side-effects 

After clicking OK above: 
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Figure 6.10: Showing a goal call 

The HyperTracer has taken us automatically to a suspect goal call in the first top 
goal execution (the grammar loading). The call is inadmissible, because optrel 
should have identical 2nd and 3rd arguments, and the semantics argument should 
not be 'x'. After choosing “WHY, N&Q” again: 

 

Figure 6.11: Showing a solution 

The transformation performed by the preprocessor is incorrect, and we continue: 
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Figure 6.12: Showing a solution 

This append solution is correct. After “Correct & Continue”: 

 

Figure 6.13: Showing a solution 

But this one isn't: the third list should contain 'relative' instaed of 'x'. After “WHY, 
N&Q” once more, we get the diagnosis in the source program window: 
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Figure 6.14: Showing a wrong clause 

Eight queries were necessary (counting the “top goal incorrect” statement) to find a 
diagnosis, using declarative source debugging. The SECURE assumption was valid 
in this case, and no confirmation was needed. AD&Q, the main declarative 
execution debugging algorithm available in the HyperTracer, would need 11 
queries. 

6.6. User interface object types  
In this subsection we review some of the more relevant HyperTracer interface 
object classes, i.e. debugger interface objects which the user can act on, namely 
those with a strong meaning in terms of Prolog debugging. The interface browsing 
features are implicit in the HyperInterface and MacLogic, and are not described 
here. 

You may look into appendix C for an exhaustive list of object classes and available 
commands. 

HyperTracer control window 

This is a window giving access (by doubleclicking a list item) to the 3 main 
HyperTracer windows. 
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Figure 6.15: The HyperTracer control window 

“Program Windows” window 

A window with a list of all windows containing program files to be debugged. A 
doubleclick on a file opens its source window. 

 

Figure 6.16: The “Programs Windows” window 
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Window with list of top goals 

Lists all top goals executed under the HyperTracer (cf. figure at the beginning of the 
example session). Double-clicking on one of them opens or selects its goal behavior 
window (cf. below). 

Oracle window 

Contains an abridged summary of all oracle statements. A doubleclick on a 
statement opens the goal behavior window where the selected oracle statement was 
made, and selects the appropriate goal behavior facet. There's also a “Remove 
Statement” command, which retracts the selected oracle statement (for when the 
user makes mistakes as an oracle). Here's the oracle window after some of the user 
interactions reported above : 

 

Figure 6.17: Oracle window 

Notice that there are no incorrect statements: during the session above we just used 
the WHY command, which only assumes a goal behavior facet to be incorrect. 

Goal behavior window  

Contains all declarative information about a goal: its call, the solutions (numbered) 
and failure information, all as individual list items. 
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Some facets may be missing (for example, there are all solutions but the first, and 
no call). To avoid massive storage of everything, the HyperTracer typically stores 
only some goal facets at first. One can request recomputation of the missing ones 
for a particular goal, by using the 'Complete Information' command (or the 
declarative diagnosis will do this automatically when necessary). 

The menu commands that apply to the whole window, or specifically to the above 
goal behavior facets, allow additional information to be accessed, such as side-
effects, source, and -last but not the least- the bulk of the navigational and diagnosis 
features of the debugger. 

Window with DB side-effects 

Contains all database side-effect calls changing a predicate. Only those older than a 
certain time - i.e., the relevant ones - are displayed.The same commands that apply 
to goal behavior facets (in goal behavior windows) are available for these goal calls. 
Here are the side-effects potentially affecting the optrel solution in the 
HyperTracer example session above: 

 

Figure 6.18: A DB side-effects window 

Window with output side-effects 

Contains all output side-effect calls under a goal (its segment), or under it and up to 
the computation of one of its solutions.The same commands that apply to goal 
behavior facets (in goal behavior windows) are available for these goal calls. 



Miguel Calejo 

 

126 

For example, consider goal top for the following program: 
p :- write_user(1).   p :- write_user(2).      

q :- write_user(3).   q :- write_user(4). 

top :- p,q,fail. 

Here's its output side-effects window: 

 

Figure 6.19: An output side-effects window 

Window with undefined predicates 

A window with all predicates undefined in the currently loaded program, obtained 
by using a menu coomand in the “Program Windows” window. A doubleclick on a 
predicate opens the source window containing a clause calling it, and selects it. 

“WHY filter” window 

It allows you to specify and impose a Prolog term which must occur in all suspects 
(except output segments) to be considered by the WHY commands, by editing the 
text field and pressing “This filter”. Whether the filtering by WHY commands is 
enabled or disabled depends on whether the “Apply” checkbox is checked or not. 
Following is its default state: disabled, and furthermore with a variable (“Any”) 
which would match any term. 
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Figure 6.20: The “WHY filter” window 

Window with a tree view of a Prolog term 

A window representing a Prolog term in tree form. Can be created for any (goal 
behavior facet) term. 

6.7. HyperTracer commands 
All but the first two are  available from pull-down menus, applied to a selected goal 
behavior facet. 

6.7.1. Main execution browsing commands 

tg(G) (a Prolog meta-predicate) 

Executes goal G under the debugger, requiring the interesting parts of the program 
to have been loaded by the debugger. G is implicitly stated admissible. Any number 
of solutions can be computed, and execution can be interrupted by the user with the 
keyboard (or by user specified spypoints conditions, or type violations - cf. below). 
The execution database is always kept in a consistent state. 

Declarations 

There are essencially 3 types of textual declarations available to users: 

• Directives to make a goal immediately accessible for debugging (i.e., turning it 
into an access point, cf. “Virtual Trace Storage” chapter 7). For example, the 
HyperTracer already has declarations like the following for all side-effects, to avoid 
their recomputation: 

visit_solution(asserta_user(_)). 
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• Conditional spypoints can also be specified, as a particular case of the previous 
declarations. The HyperTracer contains some (type-checking) declarations as 
follows: 

visit_call(assert_user(X)) :- var(X), !, stop_at_once. 

• Correctness declarations for the HyperTracer diagnosers, using the 
correct_solution( Goal, Solution_number ) predicate. For 
example, all solutions of asserta goals are correct: 

correct_solution(asserta_user(_),_). 

AND tree 

Opens a window with the and proof tree of the selected solution (coinciding with 
the suspect tree ignoring the effects of cuts). A double_click on a tree node opens 
the goal behavior window containing the goal facet represented in the node, and 
selects it. 

Latest solution below 

An example of a (back)tracing command. Selects the last goal solution under the 
selected one. If the respective goal behavior window does not exist it is created. 

Complete information 

Completes the information in a goal behavior window, by using goal recomputation 
to “fill in” the missing pieces of information. 

6.7.2. Main declarative debugging commands 

These commands are mostly available for goal behavior windows. 

Correct 

Declare the selected suspect (goal behavior facet) as correct. This is a way to make 
an oracle statement. After checking for oracle consistency, an abridged reference to 
the statement is made in the Oracle window. 
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Why, D&Q 

Builds the suspect tree rooted in the selected goal behavior facet (suspect), refines it 
using the current oracle knowledge, eventually refines it further by using the (cf.) 
“WHY filter” and chooses a suspect according to a particular diagnosis algorithm. 
Then it opens a goal behavior window with the chosen suspect selected. If there's 
only one suspect (a diagnosis), the relevant program source is shown. 

This variant uses the Abstract Divide & Query algorithm (GD&Q(1) ignoring tree 
form), and considers the “pure” version of the current suspect set (ignoring the 
effect of Prolog cuts, but not of database side-effects). There's a different command 
(WHY, D&Q…) considering the effect of cuts. 

Why, N&Q 

A variant of WHY, the main command to be used in debugging.  “Why, N&Q” and 
“Why…, N&Q” are the declarative source debugging commands available in the 
HyperTracer. They require the execution database to be completly explicit - no 
recomputations to be needed (cf. HyperTracer architecture description above). 

It builds the suspect tree rooted in the selected goal behavior facet (suspect), refines 
it using the current oracle knowledge, eventually refines it further by using the (cf.) 
“WHY filter”, obtains the source suspect set, and chooses a suspect according to the 
Narrow&Query algorithm. It will or not use the SECURE assumption (thus 
behaving like the SECURE(1) algorithm), depending on the previous use of the 
“use_SECURE_assumption” command (cf. above). Then it opens a goal behavior 
window with the chosen suspect selected. If there's only one suspect (a diagnosis), 
the relevant program source is shown. 

This variant considers the pure version of the current suspect set (ignoring the effect 
of Prolog cuts). 

Correct & continue 

This is the other command (in addition to Why) typically used during algorithmic 
diagnosis.  

It is a combination of commands “Correct” and WHY, to make an iteration in an 
ongoing algorithmic diagnosis process (no matter the algorithm being used). It is 
equivalent to the following steps: 
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1) Apply the (cf.above) Correct command to the selected suspect (goal behavior 
facet), and set its window aside. 

2) Find the suspect which was “insinuated incorrect”1 (with a command WHY) and 
which caused inspection of the present one via some diagnosis algorithm. 

3) Apply the same WHY command to that suspect, causing a different suspect (or 
even a diagnosis) to be inspected, due to the new oracle statement and consequent 
suspect set refinement. 

This command cannot be applied to output segments. 

Correct segment 

Declare the selected suspect (on the side-effects in the window) as having a correct 
output segment. An abridged reference to the statement is made in the Oracle 
window. 

Why this segment 

A variant of WHY (cf. command “Why, D&Q” above), now applied to the goal 
segment. 

This variant uses the GD&Q(1) algorithm. 

Explain diagnosis 

This command is inspired on the discussion in section “Inconsistent oracle”, chapter 
2. It gives an explanation for the current suspect set for the selected goal behavior 
facet, ignoring the suspects originated by extralogical features. There's a variant of 
this command for less pure suspect sets, taking Prolog cuts into account: “Explain 
diagnosis…”. The current suspect set may have just one element, being a diagnosis 
- hence the command name.  

                                                

1 The WHY command may be used even without the corresponding oracle statement, hence 

“insinuating” the selected goal behavior facet to be incorrect. 
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The explanation is the minimum1 set of oracle statements necessary to obtain it. It is 
displayed by setting aside (nearly) all HyperTracer interface objects, except the goal 
behavior windows where the relevant oracle statements were made. This allows the 
user to retract an (oracle) statement causing an unpleasant diagnosis. In other words, 
one made a mistake as oracle and is given a chance to retract himself - cf. “Oracle 
window” above.  

This command does not currently support declarative source debugging algorithms. 

6.7.3. Commands for browsing across program changes 

In addition to implicit browsing across program changes, available when using 
algorithmic debugging of programs with database side-effects, the user can perform 
browsing explicitly: 

DB SEs on me 

Opens a window containing a list of all DB side-effect calls potentially affecting the 
predicate of the selected goal behavior facet (cf. “Window with DB side-effects” 
above). Only those calls made previously to the facet time stamp are shown, since 
no others should be relevant for that facet. 

6.7.4. Commands for browsing output side-effects 

Output SEs under me 

Opens a window containing a list of all side-effects under the selected goal behavior 
facet (cf. “Window with output side-effects” above). If the selected facet is the call 
or the failure, all are shown. If it is a solution, only those that occurred 
(chronologically) up to it  are shown. 

6.7.5. Source browsing commands 

Matching clause 

Opens the source window containing the clause matching the selected solution 
facet, and selects it. 

                                                

1 Assuming that no subsumption rules are being used by the oracle, which simplifies the 

implementation: the relevant oracle statements are simply those concerning the literals in the 

diagnosis. 
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Matching clause producer 

Shows the assert call producing the clause matching the selected solution, or a 
message if the clause was not asserted dynamically (“You produced it!”). 

Parent clause 

Opens the source window containing the clause calling the goal in the window, and 
selects it. 
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7. Implementation issues 

In this chapter we overview the possibilities for implementing access to 
computation traces and present our chosen method of doing it (first described in 
[12]). We also overview the HyperTracer design, including its human interface 
subsystem. We conclude with comments on performance.  
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7.1. How to access a computation trace ? 
The typical straightforward way to examine Prolog derivations is through variants 
of the traditional 3-line interpreter. These variants add extra arguments to convey 
desired information, which can be examined at runtime (e.g. in a tracer) or at the 
end of the computation (e.g. in an explanation facility). Partial evaluation can 
sometimes be used to “compile away” the interpreter to render it more efficient 
[50]. 

Future Prolog implementations may come to provide standard low-level support for 
such meta-level facilities, producing say internal structures for proof trees [5] or for 
term binding dependencies [10][54]. There's still much to be explored in this vein, 
by allowing increased access to richer information furnished by Prolog abstract 
machines. For example, stack frames already include partial information about 
proof trees, and the trail includes  partial information on term binding dependencies. 
This information could be supplied at the language level for programmers. 

Even so, such improvements will still have to deal with situations where the amount 
of utilized information is large (in particular comprising information about failed 
derivations, such as suspect trees). Prolog is space efficient because it keeps only 
the current AND tree, and it certainly would not be so if it kept failed OR branches 
as well.  

Two extreme implementation possibilities come to mind for accessing execution 
trees, which are exemplified in the next section: 

A) database: Execute a top goal once and for all, numbering all its derivation nodes 
in the order they are visited, and storing in a database full annotations about each 
one1. 

                                                

1This approach is taken in [30], and in [34]. 
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B) recomputation: Execute a top goal once and for all, counting all its derivation 
nodes in the order they are visited; to access information pertinent to some node 
later on, simply recompute the top goal under the same execution strategy, restarting 
the node count, and stopping when the desired node number is found. We rely on 
the basic fact that sequential Prolog implementations are deterministic, in the sense 
that the same goal call, in the same program1, will always come up with an identical 
derivation tree.  

Option B is very frugal on space, since it needs barely none at all! However it 
penalizes the access time to derivation nodes, which is proportional to the size of 
the original derivation.  

Option A suffers from a severe problem: the space needed for the database will be 
roughly proportional to the size of the derivation. One should bear in mind, 
furthermore, that typically not all derivation nodes need to be accessed. 

Initial work on debugging at UNL began by using a meta-interpreter having the 
diagnosis algorithms embedded in it [63][64]. These relied only on term 
dependency information, and were not amenable to a uniform divide-and-conquer-
based uniform treatment of all bug types.  

Work by the author started by using option B above [66]. This allowed the first 
uniform GD&Q(1) algorithm to be implemented, for wrong solutions and 
incomplete solution sets, for a language with cuts - the “UNL Prolog” dialect [78]. 

We then proceeded to successive HyperTracer implementations, using successive 
refinements of the present debugging framework, via a hybrid compromise between 
options A and B: by storing some nodes (like one would lemmas) we can avoid the 
repetition of the computation below them whenever recomputing is needed. From 
the user's point of view, the system's response time, once the original computation 
takes place, can be made reasonable. On the other hand, the diagnosis algorithms 
make use of the stored information to accept only some abstraction of the derivation 
tree, till there is further need to focus on some subtree in greater detail2, whence the 
necessary partial recomputation is performed on demand. 

                                                

1Assuming for now that there are no lasting database or I/O side-effects from one execution to the 

next. 

2As when the method of  [47] moves from abstract to concrete diagnosis mode. 
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This idea was first presented in [76], which used it only for binary trees. Our 
approach can thus be seen as a generalization of his approach. 

Recently we used also option A, but in a slightly different context: to support 
updating of logic programs [71] (cf. chapter 8). 

We now illustrate the idea of a hybrid compromise with an example.  

7.2. Trace access options 

Consider the Prolog program and the unsolvable top goal call b(boom): 

b(Y) :- b1(Y).  b1(Y) :- b2(Y).  b2(Y) :- b3(Y). 

b3(Y) :-  b3_1,  b3_2,  b3_3(Y). 

b3_1.  b3_2.  b3_3(foo). 

  

This being a nearly deterministic computation, its AND/OR execution tree is easy to 
depict: 

 

Figure 7.1: An AND/OR execution tree 
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The numbers show the order in which Prolog visits the tree nodes (EXIT and FAIL 
ports considered different nodes or suspects). Now suppose we're interested in 
potentially accessing all solution or failure nodes of this top goal's computation. The 
database option suggests using some mechanism to execute the top goal producing 
as a side-effect something like: 

 
No. Type Information 
1 solution b3_1 
2 solution b3_2 
3 failure b3_3(boom) 
4 failure b3_2 
5 failure b3_1 
6 failure b3(boom) 
7 failure b2(boom) 
8 failure b1(boom) 
9 failure b(boom) 

Table 7.1: A simplified execution trace 

Assuming we're interested in goal calls only insofar as what regards information 
impinging on their failure, then solutions and failures alone are (chronologically) 
counted and kept. 

Adopting the recomputation option, and if we just retain the goal call b(boom), 
then we can recover any node in at most 9 steps (counting as steps both solutions 
and failures). 

What we have in mind though is a hybrid solution. We keep some nodes in the 
database, and obtain any others by demand-driven recomputation. In this example 
we could keep only step 6: any step below it can now be accessed  in about half as 
many steps as before, by considering the intermediate call b3(boom) as a 
recomputation top goal; on the other hand, if we need to access the steps involving 
goals b1 and b2 we  can use the (“lemma-like”) fact that b3(boom) failed without 
solutions1, and avoid visiting the steps below it in the above tree. 

                                                

1We can use the step number to identify a lemma. And there's nothing to gain from performing 

subsumption tests,  because Prolog's extralogical features make their use unwarranted. 
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7.3. Virtual trace storage 
The basic idea is to keep an abridged version of the execution tree, stored as a 
Prolog database only of some selected execution tree nodes (i.e. goal behavior 
facets). Nodes not expressely stored can be accessed via a demand-driven and 
shortened recomputation from the stored ones. Changes of criterion regarding which 
nodes are to be stored is achieved by tuning a tree weight measure bound, and 
affects the trade-off between the use of database space and expected recomputation 
time. This parameter, which can be dynamically adjusted, is to be set to an initial 
value depending on the speed of specific Prolog implementations and their available 
database space. 

7.3.1. Recomputing 

In order to recover an intermediate goal call G in the midst of some top goal 
derivation, it is sufficient to know how many nodes were visited during its complete 
execution until G (this may include several solutions or solution attempts). Since 
Prolog undoes all variable bindings on backtracking, logical variables can only be 
used to number nodes relatively to the current AND tree, not all the nodes of an 
AND/OR tree. The latter numbering can be accomplished with a global counter, to 
which destructive-assignements are made (i.e. not undone on backtracking).  

To reobtain the solutions of a subgoal G' one can of course launch G' directly, 
instead of the original top goal. However, if one wishes as well to reproduce the 
goal numbering under G', it is necessary to continue on counting from the 
numbering performed by its ancestors and previous brothers. This must also be 
ensured whenever retrying G' for additional solutions.  

7.3.2. Choosing access nodes 

An access point or node is a goal call about which we store some (possibly partial) 
information - one or more goal behavior facets. Deciding on whether to keep 
information about a goal G, by turning it into an access point,  should take into 
account the following constraints: 

a) If we keep G's variable bindings at calling time we can relaunch it later as a goal, 
visiting an identical computation tree, and therefore gain access to whatever is 
below G. 
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b) If we keep the variable bindings of one of its solutions, G', we can omit the 
computation below that solution whenever we recompute G, or an ancestor of G, 
simply by making G' a stored access point. 

c) If we keep a solution of G, G', but there are subsequent ones to it that were not 
kept, then, if ever we later recompute G  we'll not be able to profit from having 
stored G'; Prolog's backtracking scheme isn't able to skip the computation of an 
intermediate known solution within a sequence of solutions simply by storing it as a 
lemma. 

In addition, we wish to keep the cost of any recomputation under control. 
Assuming cost to be measured as the number of nodes visited, we arbitrate a 
maximum number of nodes, the weight bound WMAX, as an adopted cut-off 
measure on the size of recomputations. Furthermore, access point nodes all have 
just weight 1 within the recomputations that contain them. The cost of recomputing 
a solution G' for a call G will be the number of nodes WG' visited under G till G' is 
produced. On the other hand, the cost of rediscovering a goal call B under a call A 
is the number of nodes WAB visited under A till reaching B. 

In order to decide whether to keep a solution G', it is necessary to retain its node 
count WG' to compare it with WMAX; if WG' ≥WMAX, the solution is stored. It is 
also stored if some previous solution for G was already stored. Similarly for any 
goal call B under an already stored call A: iff WAB ≥ WMAX,  B is stored. 

7.3.3. Time vs space trade-off 

The maximum recomputation cost for a solution or call is WMAX. As for the 
number of access points created, it depends on the weight bound and its relation to 
the shape of the execution tree. 

Let's assume a deterministic (each goal matches a single clause) and balanced 
execution tree with N nodes. Consider the number AS of solutions kept at access 
points. If WMAX ≤ b (the average tree branching factor), then AS = N/b : only 
solutions at the bottom level of the tree will not be kept access points, as the 
solutions at all other (higher) levels will have weight ≥ WMAX. If WMAX >> b 
then AS ≈ N/WMAX, as the solutions kept will be evenly distributed across the 
tree. This should be the situation for fast Prolog implementations, where WMAX can 
be made larger without degrading the response time. 
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Nondeterministic trees degrade AS, because of the c) constraint above. It forces 
additional solutions to be stored, no matter how cheap their computation1.  

Now consider the number of calls kept in access points, AC. If the tree consists in 
just a single chain of nodes, AC ≈ N/WMAX. Otherwise AC will tend to be larger 
because weights of sibling calls increase to the right: if any one of them is heavy 
enough to become an access point then all its right siblings will be too2. 

Arbitrating a small weight bound leads to the creation of many access points, hence 
to greater use of space and smaller recomputation times. A greater weight allows to 
save memory at the expense of slower performance. Extreme granularities (weight 
bounds of 0 and ∞) reduce the framework to the “database” or “recomputation” 
options above. 

7.3.4. Side-effects 

Side-effects pose additional problems regarding recomputation: we wish to inspect 
Prolog's wanderings without fiddling with the world state, which may have changed 
during the original execution through side-effects. When side-effects are external 
(I/O), it is sufficient to enforce their derivation nodes to become appropriate 
“lemma” (or “access point”) nodes. Proceeding this way we can access and 
recompute their ancestors, and simply look up the previously logged side-effect goal 
solutions, thus avoiding duplicate side-effect interactions with the external world. In 
other words, during recomputations output is inhibited and input is consumed from 
logged information. 

                                                

1Extending Prolog to allow a sort of “goto next redo”, relatively to a stored solution, would solve this 

problem by allowing skipping of adjacent (“ORwise”) solutions during recomputations. This 

possibility would imply costs in state-saving however; we know of no Prolog implementation 

providing such a facility. 

2It would be nice if applications could make do without storage of calls… For example, debugging 

of normal programs (typeless, and without cuts or side-effects) can do without it. Another possibility 

to avoid storing calls would be to undo the bindings done by the computation under a stored solution: 

if the stored solution includes term binding dependencies, one can recover the original goal call. 
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Internal (DB) side-effects complicate matters. Assuming we have a single top goal 
(i.e. alternatively we reinstate the whole database when moving to the next top 
goal), and assuming the program doesn't tamper with executable clauses but merely 
with the so called internal database, we could then treat DB side-effects in the same 
way we do I/O ones. Either assumption is too restrictive however. 

As we're interested in inspecting several top goals for the same program, “internal” 
side-effects cannot simply become access nodes. Some indexing relative to  the 
current top goal is needed, or else a global goal numbering across top goals. On the 
other hand, self-modifying code, a possible practice for Prolog systems as a whole, 
complies us to make clauses valid only for the “time interval” between 2 goal 
numbers (of the assert which creates the clause and of the retract which 
eventually destroys it), these being potentially under different top goals. 

We solved both difficulties by marking clauses, on their creation and destruction, 
with the (global) goal number(s) of their creator/destructor goal calls. This way we 
can constrain clauses to be used only if they “exist” at the time they're potentially 
matched, and avoid problems with interaction among different top goals (we use in 
fact a single goal numbering across all top goals). Furthermore, the assert and 
retract calls are always stored as access points. 

7.4. The HyperTracer design 
Following is the global architecture of the HyperTracer debugger, repeated here for 
convenience, as in figure 6.3: 
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Top goal
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• Manual navigator
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Figure 7.2: HyperTracer architecture 

User goals are executed by the “execution machine” (currently a combination of 
preprocessor + runtime debugger predicates), that stores partial information about 
the execution in the Execution Database. The diagnosis and inspection mechanisms 
use this information, ignoring the details of execution control. Whenever addidional 
suspect nodes are necessary, they can ask the Execution Machine to recompute a 
particular subtree and store its goal nodes, refining the execution database 
information.  

Side-effect goals are not repeated during recomputations, nor are subcomputations 
with stored roots, which are used as lemmas. 

7.4.1. Execution Database 

In addition to some information regarding top goals, the Execution Database 
contains mainly information grouped into “access points”.  

7.4.1.1. Access point (ap) overview 

An access point is the set of all stored information about a goal call. An ap facet is 
the chunk of information relating either to the call, each of the solutions or the 
failure. It is identified by its time moment of execution. 
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Only current access points are considered as suspect goals, and only atomic goals 
can be access points, as only atomic goals are queried about by the diagnosis 
algorithms. To suspect sets restricted to access points we call abstract suspect sets, 
as oposed to concrete1 suspect sets (these corresponding to a weight bound of 0 in 
the execution machine, when all goals are aps). 

Following are the Prolog relations used to represent aps. Suspect sets are not 
explicitly kept in aps, to minimize execution space and time overheads. Abstract 
suspect sets are easily reconstructed from the relations below, only when needed. 

Side-effect goal calls (both internal and I/O) are always made complete access 
points, and program clauses are taken valid only within the “time interval” in which 
they exist, as discussed above. 

7.4.1.2. Ap identification 

An ap is identified by the time of the goal call in the original computation. Each ap 
facet is represented by its own time (an integer): 

an_ap(AP) 

7.4.1.3. Zooming status 

This is the information telling when a zoom-in operation (cf. below) would be 
relevant, i.e.there are still nodes to be made aps in this execution region. 

First, a “flag” saying if there are any nonstored solution or failure nodes between 
this call and the aps (failure/solutions) immediately below it: 

top_down_concrete(AP) 

Second, a similar “flag” saying if the nearest call stored (i.e., this ap's “launcher for 
recomputations”) is its father; if not, there are ancestors still candidate for storing: 

father_is_launcher(AP) 

7.4.1.4. Call information 

Goal call term: 

call_info(AP,Term) 

                                                

1Following [47] terminology. 
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The previous ap facet in the current derivation (i.e., in the same partial AND-tree): 

previous(AP,Previous) 

The reference of the father clause: 

father_clause(AP,FC) 

If this call is before an “uncle” cut, the time of matching of the clause instance 
containing that cut: 

before_cut(AP,Match_time) 

If the goal is an output side-effect: 

a_side_effect(Time) 

7.4.1.5. Solution information 

Goal solution term, time of solution EXIT port (LT): 

solution(AP,LT,N,Term,Matching_clause) 

Entering time (ET) for the computation fragment producing the solution (only for 
solutions 2 and later, if any), for later identifying what's under the goal: 

computation_fragment(AP,ET,LT,N) 

Again, the previous ap facet in the current derivation, possibly (but not necessarily) 
under the goal: 

previous(LT,Previous) 

7.4.1.6. Failure information 

Time of FAIL port (LT), number of goal solutions, reference to the matching 
predicate definition: 

failure(AP,LT,N_sols,Functor/Arity) 

Time of REDO port (to later identify what's under the goal): 

computation_fragment(AP,ET,LT,failure) 

Previous ap facet of the goal call (present iff the goal failure facet is stored but the 
goal call isn't), necessary to know which goal to use later as a launcher of a 
recomputation to obtain the present call: 
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previous_for_launcher(Call_ap,AP) 

7.4.1.7. Global and other information 

Top goal time interval 

top_goal_time(Start_time) top_goal_end(Start,Stop_time) 

Comments on the “previous” relation 

This relation represents the SLDNF OR tree at the current level of abstraction. 
Nodes in the relation represent either call or solution ap facets. Each of these “has” 
a single associated tuple, where it is the first argument.  

Notice that previous/2 is not transitive, but one can define a transitive “same 
derivation” relation by using the REDO/EXIT times of solutions. One can also 
define an “ancestor” relation from previous/2 together with this time information.  

7.4.2. Execution Machine 

The execution machine is currently implemented in C-Prolog, without specific 
builtins except for a set of primitives to destructively assign integers to a variable 
(used mostly to implement non-backtrackable counters). 

7.4.2.1. Program representation 

The program being debugged is assumed to be preprocessed and loaded (and 
compiled, when using a compiler-based Prolog implementation), in order to 
transport debugger information in additional predicate arguments, and to have a few 
“hook predicates” called at the call/fail, exit/redo and clause match ports of program 
predicates.  

For each predicate definition a new predicate symbol is created, invisible to the 
user, and the original clauses are changed to have it in their heads. The original 
predicate symbol is just used for an (also new) “glue” predicate definition, which 
simply calls the hooks and the invisible definition. From the outside a preprocessed 
predicate looks like a normal one, apart from the extra arguments (which a lower 
level implementation could provide implicitly). 

Built-ins and other uninteresting (i.e., “predeclared correct” via specific rules in the 
custom oracle theory) predicates are not preprocessed, except for metapredicates 
and side-effects. 
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In order to support assert and retract, program clauses always have an associated 
creation time and optionally a destruction time, defining a time interval in which 
they exist. 

In order to support builtins involving external side-effect (I/O)1, these are always 
made complete access points, to avoid fiddling with the “external world” state while 
recomputing. This is implemented using “glue” predicates that are preprocessed. 

7.4.2.2. Execution machine operations 

The execution machine is used for 3 distinct operations, corresponding to different 
situations.  

Top goal. Launch a top goal, making it a complete access point. More than one 
top goal can be browsed at once, since all information is kept associated to some 
(unique) time instant. 

Complete information. Given a goal number, recompute its goal call (if not 
yet stored) and initial solution segment. Both the access point whose call is used to 
launch the recomputation and the access point looked for become complete. 

Zoom-in. Given a goal number of a complete access point, recompute its goal 
call with smaller Wmax=0, in order to create more access points. I.e., refines an 
abstract computation representation into a concrete one. 

We now describe the additional environment required for each goal call, during 
execution of the “top goal” operation. We then give a pseudo-code description of 
the processing done at the CALL port. The Prolog source code for the “top goal” 
operation is given in appendix G. For a pseudo-code description of the other ports 
and operations, see appendixes D,E,F. 

The environment for each goal 

In addition to Prolog's standard environment information, and to a a global “Time” 
counter, the HyperTracer uses the following variables for each active goal: 

Flags 

• Keep_times True iff the goal is (already) an ap. 

                                                

1 However, input side-effects are not supported by the diagnosers. They're simply tolerated. 
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• Keep_solutions True iff the goal is an ap for solutions 

• Ilaunch True iff the ap has stored goal call, and therefore can be use to launch 
recomputations 

• Father_is_launcher True iff the goal's father has Ilaunch true (passed as an 
argument) 

• top_down_concrete  True iff until now all goals immediately under this one have 
all solutions and failure facets stored.  Passed as an argument to the goal's children. 

Integers 

• A reference to the nearest launcher (an ap with stored call) above, to access its 
local variables (passed as an argument) 

• Last_enter Time of last REDO port for this goal 

• Last_leave Time of last EXIT port for this goal 

• Solution (order) number 

• Previous ap facet in current derivation (actually an integer pair: one for the goal 
call, the other for the last goal solution) 

• Father clause reference  

• Nearest cut forward, if any (i.e., its clause instance match time) 

Only if Ilaunch is true:  

• saved_time Time that would be saved by the last computation fragment of this 
goal, were its coresponding solution stored and used as lemma in a recomputation. 

• alien_time  Time spent not under the goal, since the time of its CALL port; used 
to compute saved_time above. 

Processing at the CALL port 

Following is the pseudo-code description of the processing done at the CALL port, 
for the “top goal” execution machine operation. Processing for other ports has a 
similar flavor (cf. appendixes). 

 

Keep_times=FALSE, Keep_solutions=FALSE 

top_down_concrete (for my children!)=TRUE 
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Last_enter=time 

If there are cuts in my father 

 pass down the appropriate “cut” (match) ID 

else 

 pass down my father's 

Saved_fragment_time=0 

If the call is costly  || I must be an ap  (side-effects, 

etc.) 

 Creates new ap  

 Store my (inherited) father_is_launcher flag 

 saved_time=0 (time saved by using stored  solutions) 

 alien_time=0 (time spent not under this call) 

 Stores the call 

 Keep_times= TRUE 

 Ilaunch=TRUE (I am a launcher) 

 Pass down reference to this call as the launcher 

 Pass down father_is_launcher=TRUE 

 Store “before cut” info 

 Store previous ap facet in derivation 

 Store my father's clause reference 

 pass down this call ap as previous facet 

else  

 Ilaunch=FALSE 

 Pass down reference to old launcher 

 Pass down father_is_launcher=FALSE 

 pass down old previous facet 

Increment time 

The cost of recomputing a call or a solution from the closest stored ancestor (the 
launcher) is: 

Cost = time of port (call/solution) - time of nearest launcher (may be THIS goal's 
call!) - alien_time of launcher - saved_time of launcher 
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7.4.3. Building suspect sets 

Suspect sets are computed on demand from the (minimal) information kept in 
access points, and passed on to some diagnoser algorithm which later selects an 
interesting one to show the user.  

For example, here's the code to obtain the AND tree for a goal solution - equivalent 
to its suspect tree, for definite and side-effect free Prolog programs: 
 

abstract_and_tree(S,T,Next) :-  

    abstract_and_tree_(S,TT,Next), 

    reverse_tree(TT,T). 

 

abstract_and_tree_(S,and_tree(S,Children),Next) :- 

    previous_solution(S,PS), 

    ( 

        is_under_solution(PS,S) -> 

abstract_and_children_(S,PS,Children,Next) 

            ;   Children=[], Next=PS 

     ). 

 

abstract_and_children_(A,S,[C1|Cn],Next) :- 

    abstract_and_tree_(S,C1,P), 

    ( 

        is_under_solution(P,A) -> abstract_and_children_(A,P,Cn,Next) 

            ;   Cn=[], Next=P 

     ). 

The tree is built simply by walking through the linked list implicit in the “previous” 
relation, restricted to solution facets by the use of previous_solution, and 
taking notice of when solutions are under others (using is_under_solution, 
which simply checks computation fragment/solution times), hence imposing the tree 
structure. The obtained tree is reversed, to obtain the standard chronological order, 
from left to right. 

As another example, here's the code to obtain the failure tree for a goal failure - 
equivalent to the suspect tree for a goal solution set, for definite and side-effect 
free Prolog programs: 
 

failure_tree(Failure_facet,Tree) :-  

    retractall(is_marked(_)), 

    failure_tree_(Failure_facet,Tree). 

 

failure_tree_(F,failure(F,Children)) :- 

    ( 

        next_failure_below(F,The_F,_) -> 

failure_tree_children_(F,The_F,Children) 
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            ;   Children=[] 

     ). 

 

failure_tree_children_(F,The_F,[C1|Cn]) :- 

    failure_tree_(The_F,C1), 

    ( 

        next_failure_below(F,FF,_) -> failure_tree_children_(F,FF,Cn) 

            ;   Cn=[] 

     ). 

 

next_failure_below(FID,The_FID,APID) :-  

    last_valid_failure(FID,The_FID,APID), 

    assert(is_marked(The_FID)), 

    !. 

As failure facets are incorporated into the tree, they become marked (with a fact 
is_marked); last_valid_failure returns the latest solution set (failure) 
facet under the current ap which is not yet marked. Taking the latest failure also 
guarantees that it is the closest to the current one (i.e., such that there's no 
intermediate goal with stored failure facet). 

Suspect trees for impure programs, namely with cuts, are built similarly, using 
mutual recursive calls to variants of the two previous predicates, and taking into 
account the information in the before_cut relation in the execution database. 
Suspect trees for output segments are built similarly to failure trees, and using the 
information in the a_side_effect relation of the execution database. 

The current version of the HyperTracer does not build extended suspect trees taking 
into account internal database side-effects (as defined in chapter 4). Before 
showing a diagnosis, it simply checks whether it was dynamically produced, and if 
so, gives a warning and immediately continues with the suspect tree for the database 
side-effect.  

7.4.4. Diagnosis algorithms 

To avoid modal (rigid) user interactions, the diagnosis algorithms are used 
incrementally. When the user gives a WHY command the following steps are taken: 

• The suspect tree for the selected goal behavior facet is built from the Execution 
Database, as explained in the previous section. 

•  It is refined according to the current oracle knowledge, by traversing the suspect 
tree checking for nodes stated correct by the oracle. 
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• It is passed on to the appropriate diagnosis algorithm, which chooses a goal facet 
to be visited (inspected) by the user, eventually a source text chunk - a diagnosis. 

• The chosen goal behavior facet is shown and selected, ready for further user action 
on it: either continue with another iteration of the (present or other) declarative 
algorithm, or simply browse around. 

The AD&Q and N&Q diagnosis algorithms are implemented each using two tree 
traversals: the first to count nodes and different components in the suspect tree, 
resp.; the second to actually choose the best node.  

SECURE is implemented as a variant of N&Q: N&Q simply checks whether the 
SECURE assumption should be used, and checks also if it becames invalid, turning 
it off automatically after notifying the user. 

Declarative source debugging (N&Q and SECURE algorithms) is available only if 
the weight bound of the execution machine is 0. Although a “diagnosis” found in 
an abstract suspect set by a declarative execution debugging method is useful, 
(because a subsequent concrete diagnosis can be found on the subtree to be later 
“zoomed-in”), it is useless for declarative source debugging: the goals which were 
ignored, because they aren't stored access points, may use program components 
absent from the “abstract source suspect set”, and the diagnosis may be among 
them. 

7.5. The “HyperInterface” 
In order to implement the HyperTracer interface, it became necessary to follow an 
object-oriented methodology, to couple with its complexity. The “HyperInterface” 
is the HyperTracer subsystem implementing such a methodology. It assumes that a 
simple Graphical User Interface is available, simply providing for the creation of 
graphical objects producing distinct events, and provides class mechanisms on top 
of it, implemented in Prolog. In principle, the mechanisms it provides could be 
useful to other programs as well. 
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7.5.1. Motivation 

Making a good human interface is hard work. The HyperTracer's interface is an 
example, since it is expected to render on a graphical screen Prolog goals, solutions, 
execution trees, source programs, etc., all in a consistent and integrated manner, 
although using an Prolog environment already with good graphic interface 
primitives. The effort spent on a older HyperTracer version with its interface 
(around 47 k of Prolog source) made us rethink it, leading us to the HyperInterface 
(HI) interface subsystem.  

The current HyperTracer interface is implemented still with around 30k of 
debugger-specific, but provides a larger functionality, is clearer, and benefits from 
several new generic interface features. Its cosmetics is poor, because it was not a 
design objective: functionality, flexibility and portability were the objectives - 
cosmetics (in particular, additional graphical atributes, automatic layout methods, 
etc.) can be added a posteriori, and depend on each particular Graphical User 
Interface. 

The HI itself consists of about 65k of Prolog code, independent of the particular 
application using it (in our case the HyperTracer), and like the HyperTracer is 
currently running on the MacLogic environment [3], on Apple Macintosh 
computers, and on the ALPES Prolog environment [2], on X-Windows 
workstations. 

7.5.2. Overview 

The HI is asked by the Prolog program - in our case, the HyperTracer - to create, 
destroy or update  graphical objects, and lets the user interact with them via 
commands (cf. below). There are higher-level primitives available to create several 
objects at once using an arbitrary (binary) Prolog relation.  

The objects are instances of classes, organized in a single hierarchy, each class 
consisting of a sequence of <event, condition, action> clauses (“methods”). 
Whenever the user produces an event (e.g., doubleclick on a list item), it is first 
mapped into a higher level event by the underlying graphical interface layer (i.e., 
MacLogic's), and is then fed to the currently selected object.  From there it may be 
propagated to the class hierarchy above if necessary, until a class can deal with it, 
by accepting the event while verifying the condition, and executing the action goal. 
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An object is either a window as a whole, or one of its parts. On the other hand, each 
object is an instance of a HI class, and has an identifier. Each object can therefore 
be uniquely referred to by either a pair <Window,Part> (the HI internal 
representation) or by a pair <Class,Identifier> (the application representation).  

Objects also have a name, which can be regarded as a user-readable version of the 
identifier. When the name is considered too big by the HI, it is shown in abbreviated 
form. There are several commands to display the full name of an object in different 
ways. 

Let's look at an HyperTracer debugger example: 

 

Figure 7.3: An HyperInterface object 

The selected object has name “ CALL - vp( x, [ uses, a, debugger, that, debugs ], []) 
”, class gb_call_item, identifier 596 (an application - HyperTracer - reference to the 
goal call), window 6111236 (the internal MacLogic window reference) and part 1 
(the first item in a list window).  
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A command is a user event, such as a pull-down menu command or a double-click 
on a dialog list item, and always refers to some selected object. Each object has an 
associated set of usable commands, implicitly1 specified by its class. For example, 
the pull-down menu associated with a window2 contains only items relevant to the 
window and its parts. 

Application actions, namely those with consequence on the graphical interface, are 
strongly determined by the previous user command. Whenever an HI object B is 
created by the application as a response (immediately after) an user command 
applied to selected object A, we say that “A created B”, or that “B is created by A”, 
or that B is one of A's “creations”. This “creation” information is crucial to some HI 
features: object creations typically have a strong causal connection to their creator, 
from the application's semantics point of view, irrespective of the application at 
hand. 

The HI keeps some session information independently of the application, such as 
the object creation relation above, event logging, etc. This, plus the taking of some 
reasonable assumptions, allows the HI to provide some fancy default features, 
therefore avoiding the need to program them explicitly. For example: updating 
groups of objects, going back to the last object or showing the object which 
“created” the current one using a menu command, or selecting a “created” object 
with a double click, are all default features provided independently of the 
application. 

The “HyperInterface” designation comes mostly from these features. Hypertext-like 
links among nodes are established implicitly by the actions taken in class methods, 
be it derived from different menu commands, doubleclicking, etc.: the “object 
creation” relation, which the HI maintains automatically, is adopted by default as 
the explicit link. 

Finally, there's an on-line help system with browsing facilities, associating an 
(editable) chunk of text to either a class or a command for a particular class, and 
also a command macro recorder facility. 

                                                

1Menus are automatically generated, using a simplified lookahead technique based on [15]. 

2The menu bar is updated transparently by MacLogic, who knows which menus belong to which 

windows. 
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7.5.3. Implementation 

The HyperInterface is part of the HyperTracer, and its native version runs on the 
MacLogic/C-Prolog. As stated above, there's also a version running on ALPES-
Prolog. There's still another (incomplete) version running on HyperProlog/YAP, an 
HyperCard1-based programming environment developed by the author. 

7.5.3.1. Basics 

An object is uniquely identified as follows:  

• from the HI side, by a pair <window reference, window part>;  

• from the application side, by a pair <Type, Identifier> (type meaning “class”). 

Events currently have the following format:  

my_event(  

 MacLogic_event, Object_ID, Window+Part,   

 my_modifiers(Shift, Option, Command, CapsLock), 

 Type 

 ) 

The <Type,ID>, <Window,Part> refer to the (same) selected object, to which the 
event is adressed. 

7.5.3.2. Types, their hierarchy and event-handling 

A type/class is defined by a Prolog predicate. Each clause represents a method. For 
a type named foo_type: 

foo_type(Event,Action) :- Condition. 

The only restriction is that menu events should be fully explicit in the clause head 
(i.e., be ground). This allows automatic menu precompilation (cf. below), using a 
simple lookahead technique.  

The hierarchy is defined by the subtype_of/2 predicate, whose arguments are type 
names. Event handling is basically done with some meta-programming: 

                                                

1 HyperCard is a multimedia application toolkit, from Apple Computer. 
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dispatch_event(My_event,Type) :- 

 functor(Type_template,Type,2), 

 arg(1,Type_template,My_event), 

 call(Type_template), 

 % Event matching and Condition testing… 

 !, 

 % this type will handle the event 

     arg(2,Type_template,Action), 

     call(Action). % now having arguments bound by condition 

dispatch_event(My_event,Type) :-  

 % otherwise some supertype should do it: 

     supertype(Type,Super_type),   

     !, 

     % deterministic: the type hierarchy is a tree  

     dispatch_event(My_event,Super_type).   

Event types depend on the underlying environment. They should contain at this 
stage a unique identification of the selected object and the event itself (menu 
command, doubleclick on object, etc.). As a matter of fact they need not be related 
to user events - for example, the HI uses special events (or messages) to create and 
destroy nodes, inquire object names, etc., and the Prolog application can use its own 
as well. 

The MacLogic version uses only the following events: doubleclick on a node, 
optionally complemented with modifier keys, and pull-down menu command. We 
decided to keep the interface cosmetics as simple as possible, to make it more 
portable to other environments. For example, popup menus were left out. 

7.5.3.3. Internal HI structures 

The main data structures used by the HyperInterface are: 

• A relation of interface objects: browser_node_instance(Type,ID,window,Part) 

• A relation of user events: user_event(Chronological_number,event) 

• The “object creation” relation referred above: created_node( Window1, Part1, W2, 
P2, Event_number ) 

• A relation of menus for each object class. Pull-down menus are built dynamically 
for each class, by looking at the events the class accepts. Using this information a 
relation type_menus(Type,Menu_list) is built. 
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• Class hierarchy relation. The class hierarchy information, specified by the user 
with facts “class_name(Super_class,is_my_supertype)” near the class definitions, is 
made available via the following relations: 

supertype(Type,Super) 

subtype_of(Type,Supertype) 

7.6. Performance and future implementations 
The current HyperTracer is implemented in Prolog, as a combination of 
preprocessor plus runtime predicates. The preprocessor simply inserts some calls 
(“hooks”) to runtime predicates implementing the required port processing (cf. 
comments at the beginning of the listing in appendix G). This approach proved 
effective for basic experimentation, because it is flexible and portable, but it is 
irrealistic for a practical debugger.  

Implementing the port operations in Prolog introduces too much overhead, as 
illustrated in appendix G. The current prototype, running on a C-Prolog interpreter 
on an Apple Macintosh IIx computer, has a speed of about 10 lips for debugged 
programs (instead of about 1500 lips for normal execution!). We compiled the 
HyperTracer (and the preprocessed programs being debugged) with a good Prolog 
compiler, and the result was just a 4 time increase in speed. 

There's however an important aspect to consider: the time and space overheads for 
executing non-access point goals are constant and independent of the program 1. 
We'll now estimate the space and time overheads for an ideal implementation, at the 
Prolog machine implementation level.  

The following table was obtained by counting basic operations in the HyperTracer 
(HT) execution port algorithms, and those performed by a standard compiled Prolog 
implementation2 to execute an iteration in the append predicate (part of the standard 
“naïve reverse” benchmark). The time costs for the ideal HyperTracer assume that 
the “hook” calls to the HyperTracer ports are inserted by the Prolog compiler, as 
WAM instructions.  

                                                

1 This was a major implementation design objective, satisfied only on the latest HyperTracer 

described here. 

2 SB-Prolog 3.0, a Warren Abstract Machine variant, from the University of Stony-Brook, NY, USA. 
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Cost per goal: Time Space in stacks Space in DB 

Standard execution  25 assignments 

17 conditional jumps 

8 jumps 

One new list element 

(if goal needs an 

environment, 2 words 

plus local variables; if 

goal has a choice-point, 

additional 6 words) 

0 

HT, non-access point 

goals 

52 assignments 

28 conditional jumps 

18 jumps 

10 words1 0 

HT, complete access 

point goals (N 

solutions) 

74 assignments 

33 conditional jumps 

18 jumps 

Time of storing N+1 

terms 

10 words 6+N words 

N+1 terms (call and 

solutions) 

Table 7.2: Execution overhead estimates 

As can be seen above, the ideal HyperTracer would introduce a speed overhead a bit 
over 100% for non-ap goals, and over 200% for access point goals (depending on 
the number of solutions and size of goal terms), on a typical Prolog implementation. 
The stack overhead would also be acceptable.   

The HyperTracer weight bound WMAX (cf. “Choosing access nodes” section 
above) could thus be made large, avoiding in practice the solution storage problems 
refered above (cf.“Time vs space trade-off” section): assuming a Prolog 
performance of 40Klips, already realistic in low-end workstations, to guarantee a 
maximum recomputation time of 1/10 second WMAX should be set to 
40000/10/2=2000, well above branching factors of most Prolog execution trees. 

                                                

1 Memory words are typically 4 bytes long.  
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In conclusion, we conjecture that the virtual trace storage mechanism is worth a 
serious implementation attempt.  

To support the declarative source debugging methods diretly in the execution 
machine, we would need O(C) space for each execution node, where C is the 
number of program components. In general, for each execution node (i.e., each goal 
behavior facet in the execution tree) we would need to keep its own information 
regarding the use of all program components. Although the use of program analysis 
can minimize this cost (say by associating predefined and smaller data structures 
with each textual goal call in the program, according to the information in a “A calls 
B” graph), it won't change its character. 

This suggests either to change the declarative source debugging methods, to 
simplify their implementation1, or to delay all source debugging - related 
proccessing to the debugging phase (i.e. after the execution terminated, with all 
goals stored as access points, by setting WMAX  to 0). We followed the latter 
approach in the HyperTracer. 

                                                

1 For example, a simplified version of SECURE could be as follows: during execution, and for each 

program component, keep only the K first goal behavior facets that match it; then apply algorithm 

SECURE, using only this partial information. This suggests a very efficient implementation, but 

whose usefulness we're unable to quantify at this point.  





Part III: Cross-fertilizations 
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8. Debugging and Knowledge Base 
Updating 

In this chapter we concentrate on the problem of updating knowledge bases (KB), 
assumed realized as normal logic programs, using negation as failure. We introduce 
a new KB update method inspired on and using the present debugging framework. 

The material in this chapter has been presented in [71], and resulted from work in 
the ESPRIT BRA COMPULOG project. 
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8.1. The problem 
The problem we want to solve is the following: given a normal program P and an 
update request, find a set of candidate transactions, and apply one to obtain a new 
program P' that satisfies the update [1].  

An update request is either of insert G or delete G, where G is a goal; insert 
G is a request to transform P so that G becomes provable; delete G is a request to 
transform P so that G becomes false (unprovable, given the use of negation by 
failure). 

A transaction is a sequence of program edition actions; these can be either 
retract(C) or assert(C), where C is a clause to be removed or added to P, resp. A 
candidate transaction is one of several transactions which, if performed on P, will 
transform it into a program P' that may satisfy the update request.  

8.2. Outline of the solution 
Our method is inspired on the following analogies: 
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KB updating Debugging 

Current KB Buggy program 

KB satisfying the update request Correct program 

Update process Debugging+bug correction 

insert A A is a missing solution - find the bug and 
correct it 

delete A A is a wrong solution - find the bug and 
correct it 

Update request information, additional 
specification of the desired theory1 

Oracle knowledge 

Table 8.1: Knowledge Base updating vs Debugging 

The idea is to proceed as follows, given an update request R: 

• Find a suspect set for the goal behavior facet corresponding to the update request, 
by simulating its execution. 

• Generate candidate transactions from the suspect set; if none could be 
generated, backtrack to the previous iteration, and resume after choosing a different 
transaction in the step below 

• Choose and apply a compatible transaction to the program. 

• If the program still doesn't satisfy the update request, iterate the procedure from 
the first step, with the transformed program. 

The suspect set (cf. chapter 2) to consider for each update request follows:  

• For a “delete G” request,  SS(solution(G))  

• For an “insert G” request, SS(solution_set(G)) 

In the present context, two actions contradict each other if they have the forms 
assert(F1) and retract(F2), and F1=F2 modulo variable renaming. It is not necessary 
to perform a subsumption test between F1 and F21.  

                                                

1 For example “annotations” on which relations to change [87] can be regarded as oracle knowledge. 



A Framework for Declarative Prolog Debugging 
 

165 

A compatible transaction is one such that neither of its actions directly contradicts 
another, in the whole transaction accumulated along the successive iterations, nor 
has a variant (i.e., identical to it modulo variable renaming) already in the 
transaction. This restriction prevents nontermination problems from originating in 
the iterative process itself. 

8.3. Generating transactions from suspect sets 
Having obtained suspect sets for the computation corresponding to an update 
request, how can we obtain candidate transactions ? 

8.3.1. The “suspect subset” transaction generator (SSTG) 

Let SS' be the suspect set to consider for the update request, as defined above (if 
more than one suspect set exists, such as in a solution with different proofs, consider 
all the respective suspect sets). The set of all candidate transactions is defined as 
follows: 

• Consider all nonempty subsets S' of SS'.  

• Each ordering of S' corresponds to one candidate transaction, with a transaction 
action for each S' element, as follows: for each clause instance C, an action 
retract(C); for each predicate definition instance <G,P>, an action assert(G). 

• The following restrictions apply to any transaction, thereby eliminating some 
candidate transactions:  

- if it contains an action assert(G), then it cannot contain any action 
involving  suspects matching goals under G, nor can it contain actions 
involving goals not in the same SLDNF-tree path as G;  

- if it contains an action retract(C), then it can't contain any action involving 
goals above the goal matching C.  

In both cases the eliminated actions would be redundant. 

                                                                                                                                    

1If an action “contradicts” another because its argument subsumes another's, a later contradiction 

conflict, in the sense above, will occur in a subsequent iteration of the update process. 
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Notice that we define transactions by combining members from a suspect set, 
corresponding to nodes on an AND/OR tree, instead of starting directly from nodes 
in an SLDNF tree, as was done in [38]. 

Example Consider the following program, borrowed from [38], and the update 
request insert pleasant(fred).  
 

pleasant(X) :- ~old(X), likes_fun(X). 

pleasant(X) :- sports_person(X), loves_nature(X). 

sports_person(X) :- swimmer(X). 

sports_person(X) :- ~sedentary(X). 

old(X) :- age(X,Y), Y>55. 

swimmer(fred). 

age(fred,60). 

The suspect set is: 

 SS(solution_set(pleasant(fred)) = {age(fred,60), old(fred), < loves_nature(fred), 
loves_nature/1 >, < pleasant(fred), pleasant/1 > } → 

Notice that neither <swimmer(fred), swimmer/1> nor <sports_person(fred), 
sports_person/1> is in the set, because of the statement subsumption rule in the 
oracle theory (cf. “Customized Oracle Theory ”, chapter 2). The arithmetic 
predicate is assumed to be “non-updatable”, or correct, in debugging terminology. 

Given the above restrictions filtering candidate transactions, the candidate 
transactions are only: 

[retract( old(X):-age(X,Y),Y>55 )] 

[retract( age(fred,60) )] 

[assert( loves_nature(fred) )] 

[assert( pleasant(fred) )] 

These are only some of the transactions obtained with the method of [38], which 
includes transactions with redundant actions. 



A Framework for Declarative Prolog Debugging 
 

167 

8.3.2. Relationship to other methods 

We'll now examine how the SSTG compares with other transaction generators, 
without giving special attention to the effects of integrity contraints considered by 
other authors. These can be seen as part of the update request, both in a SSTG-based 
and in other methods, and so we'll be assuming an empty integrity constraint theory. 
Or, if you will, we'll be comparing the “possible transaction” generation capabilities 
of the methods, irrespective of whether they satisfy the integrity contraints. 

Comparison with Guessoum and Lloyd's method 

We refer to the [38] transaction generator as “GLTG”. 

The GLTG method is mutually recursive due to negation (the deletion method calls 
the insert method, and vice-versa). This recursion is implicit in our definition of 
suspect set, which is also “mutually recursive” regarding the suspect types, also 
because of negation.  

Retract actions, and their contribution to the candidate transactions, are the same in 
both methods. This is not the case however for assert actions: 

• The GLTG produces one assert action for each atomic goal in a definite goal in the 
SLDNF tree, even if such atomic goals are never activated (because some left 
brother fails). 

• The SSTG produces one assert action for each atomic goal that failed, and which 
therefore was the leftmost goal in some goal node in the SLDNF tree. It does not 
produce assert actions for atomic goals which were not activated, i.e., were never 
matched against clauses in the program. 

• The SSTG imposes the restriction that for all assert actions corresponding to a 
MSS subset, none is an ancestor of another. The same restriction is implicit in the 
GLTG: given a definite goal in a SLDNF tree, it is never the case that one of its 
atomic goals is an ancestor of another. 

Conclusion: our SSTG depends on its iterative nature to (later) generate the missing 
assert actions if they're relevant, corresponding to atomic goals which were not 
activated. 

Comparison with Decker's method 

Decker [21] created a transaction generation method akin to Lloyd's, except that he 
uses a special selection function for SLDNF execution, defining view update trees.  
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Our SSTG is defined based on suspect trees, which are defined from SLDNF-trees. 
It should be easy to define suspect trees and sets from “view update trees”, and thus 
build an SSTG over it. We regard “view update trees” as the result of yet another 
execution mechanism, and therefore as an independent issue, just as if we were 
using (say) sidetracking or intelligent backtracking (cf. Section “Clever execution 
interpreters”, Chapter 2). 

Given the similarity between Decker's and Guessoum&Lloyd's transaction 
generation methods (modulo the different “execution mechanisms” they use), we 
conjecture that the same comments apply. 

8.4. A KBUM prototype 
We implemented a prototype following the outline above, and based on generation 
of just singleton transactions. It is nicknamed Knowledge Base Updating 
Machinery, and its algorithm is: 

• Given an update request, check whether it is satisfied, and terminate if so, giving 
as a result the concatenation of all intermediate transactions.  

• If it is not satisfied, generate the candidate singleton transactions (i.e., with a 
single action) from the appropriate suspect set using the SSTG, choose1 an arbitrary 
but compatible transaction, apply it (hypothetically) to the program, and iterate this 
procedure. Whenever no non-conflicting transaction can be generated,  backtrack 
and choose a different candidate transaction. 

At this stage we've implemented KBUM with some simplifications, namely 
ignoring other than the first solution of G in ~G failures, with simplistic criteria for 
choosing transactions, and without infinite derivation checking. 

                                                

1 See “Choosing among transactions” and “Update space searching” sections in [71] for comments 

on how to choose. 



A Framework for Declarative Prolog Debugging 
 

169 

The current prototype is based on an interpreter and auxiliary predicates written in 
Prolog, which can be found in appendix H. “Hypothetical changes” are simply 
“performed” by adding actions to a pair of lists carried along, containing the 
performed assert and retract actions. The interpreter produces a partial suspect tree 
for each solution, and, on failure, leaves asserted information sufficient to easily 
build suspect trees for failures (solution sets) and to complete the suspect trees for 
solutions. Each algorithm iteration corresponds to an execution by the interpreter. 

Although the experience with the HyperTracer was crucial in developing this 
prototype, we didn't use the HyperTracer execution machine, whose development 
proceeded in parallel. 

Example Here's another update problem (example 3 from [21], section 3.7) : 
inserting p in the following normal program: 

 
p <- r,~q. 
q <- r,~s. 

And here's KBUM's output: 

?- insert(p,T). 

T = [assert(r),assert(s)] ; 

T = [assert(r),retract_action(q, #<80005ed3>)]  % reference of 

clause 

T = [assert(r),assert(p)] ; 

T = [assert(p)] 

 → 
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Part IV: Conclusion 
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9. Conclusion 

In this final chapter, previous work on logic program debugging is overviewed from 
the perspective of the present framework, and a list of research problems and work 
opportunities is given. 
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9.1. Relationship to other logic program debugging 
work 
In order to better view what's added by the present framework, we'll for some 
authors use a graph, picturing a “territory” of possible approaches, in complement to 
a brief textual description of differences. We found out that not all dimensions of 
the territory are amenable to a natural graphical representation (at least by this 
author), and thus authors operating in those regions are treated just textually. No 
offense intended! 

First, the graph showing what's covered by the present framework in terms of the 
sequencial logic programming language features; parallelism issues will be referred 
to explicitly for those authors dealing with them.  

NormalDefinite Interpreted Partial
relations

Cuts Side-effects

The programming language

 

Figure 9.1: Our language territory 

A region with the pattern  means that the present framework covers it.  

Next, another graph, showing the types of bug manifestation (error symptoms) 
treated, and the diagnosis algorithms available for each. A region with pattern  
is covered only partially by the framework: 
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Wrong
Output
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Single
Step

Divide
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GD&Q(N) Top-down Other 
Heuristic-
based

Declarative Source 
Debugging
(SD&Q(N), N&Q, 
SECURE(N))

Bug Manifestation Type vs. Diagnosis Algorithm

Figure 9.2: Our algorithms 

In our case, non-termination symptoms can be treated by interrupting execution and 
applying the diagnoser to the partial computation, thereby assuming that the last 
goal call is inadmissible, or after manually browsing through the computation and 
finding another bug manifestation; however it cannot be guaranteed that a diagnosis 
is always found. Also, single-stepping is partially supported in the sense that the 
HyperTracer has manual browsing commands, but there's no declarative diagnoser 
using this algorithm. 

Finally, we'll use a simple graph to picture the implementation approach, regarding 
the use of time and space when the access to failed execution tree branches requires 
either recomputing or storing them (in particular for treating missing solutions). For 
the present framework, the virtual trace storage mechanism particularizes into any 
of the two simpler approaches:  
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Recomputation

Storage

Access to computation trace

Frozen
computation

Nothing
stored  

Figure 9.3: Our implementation 

We group previous work into declarative and non-declarative sections, somehow 
arbitrarly: most of the (primarly) non-declarative systems mentioned also support 
declarative diagnosers. 

9.1.1. Declarative Debugging 

Apart from what's visible in the graphs below and above, there are a few very 
important differences regarding the present framework: 

• “Frozen execution”; our diagnosers are defined over a frozen execution trace, 
thus avoiding the nontermination/incompleteness problems suffered by other 
diagnosers, and gaining flexibility: algorithms which are amalgamated with the 
interpreter executing the program1 are necessarily less modular and so more 
difficult to change. 

• Suspect trees; a related issue is our use of suspect trees as an uniform entity to 
define diagnosis algorithms, independently of the programming language and its 
execution mechanism. 

• Yes/No answers; most authors require the user to provide also complete goal 
solution sets in some situations, or run into some problems when the user doesn't, 
because they don't work on (frozen) suspect trees. 

• Integration in a graphical interactive environment; all other declarative 
debugging systems are text-based, with the exception of the Transparent Prolog 
Machine (cf. below). 

                                                

1 Like those of all other authors overviewed in this section. 
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Shapiro's “Algorithmic Program Debugging”  

In his PhD thesis, Ehud Shapiro[83] invented algorithmic/declarative debugging, in 
the full sense of diagnosis+bug correction (in this work we concern ourselves only 
with improving the first part), and in the context of Prolog, but with emphasis on 
definite programs. 
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relations

Cuts Side-effects

The programming language

 

Figure 9.4: Shapiro's language territory 

His treatment of cuts is however incomplete (cf. for instance our example in section 
“Bug instances with cuts”, chapter 4). 
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Figure 9.5: Shapiro's algorithms 

He created the earliest diagnosis algorithms, and implemented them amalgamated 
with the meta-interpreter executing the program: 
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Figure 9.6: Shapiro's implementation 

Plaistead's “Efficient Bug Location Algorithm” 

In [76] an improvement is made over Shapiro's Divide and Query, by “forcing” the 
suspect tree to be binary, thus avoiding Divide and Query's problems with non-
uniform trees. This is done by querying the user about the correctness of solutions 
with incomplete bindings1 - which is equivalent to querying about conjunctions of 
clause subgoals - in such a way as to implicitly define a binary suspect tree. 
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Figure 9.7: Plaistead's language territory 

 

                                                

1 A generalization of [64]'s “solvable” query. 
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Figure 9.8: Plaistead's algorithms 

The “binarization” of the computation is used also to support the first hybrid 
recomputation/storage approach. The idea is akeen to our own (cf. “Virtual trace 
storage” section, chapter 7), except that the fact of the trees always being binary 
simplifies the implementation. 
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Figure 9.9: Plaistead's implementation 

 

L.M.Pereira's “Rational Debugging” 

Luís Moniz Pereira introduced a new approach [64], comprising the use of 
heuristics supported on knowledge of binding dependencies, and of intelligent 
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backtracking. The main motivation was both improving the diagnosis algorithms 
and extending the scope of declarative debugging.  
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Figure 9.10: Pereira's language territory 

Prolog's impurities were first tackled. Cuts and side-effects are tollerated in 
programs, but the diagnoser essencially ignores them, apart from giving warning 
messages in some relevant situations. 

Binding dependencies  are first used to allow the oracle a more informative answer 
level, by pointing at some particular wrong term within a goal solution, letting the 
debugger successively pursue goal matches on which those wrong terms' bindings 
depend. This, and other heuristics used, mechanize typical programmer debugging 
guidelines (such as “where does this term come from”), and address the lowering of 
the average number of questions, rather than minimizing the worst case.  

Term's binding dependencies are also used to intelligently backtrack [75] over 
irrelevant subtrees, thus avoiding unnecessary questions  within the method for 
missing solutions. The Rational Debugger is still the only implemented declarative 
debugger using intelligent backtracking. 

A fourth type of bug manifestation was introduced, based on the concept of 
inadmissible goal, dealing with partial relations, and again using binding 
dependencies to detect the origin of error. Another type of query was also 
introduced: whether a goal is “solvable”, i.e. whether a goal partially instanciated 
after matching a clause can still produce a valid binding. And the user is not 
required to produce the correct solution instances (which Shapiro's missing solution 
algorithm required). 
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Figure 9.11: Pereira's algorithms 

The implementation is based on a meta-interpreter, using intelligent backtracking. 
Side-effect calls are logged and can be undone whenever the diagnosing algorithms 
require it, through the use of special Prolog stream built-ins that were implemented 
for C-Prolog[61]. 
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Figure 9.12: Pereira's implementation 

“Top-Down Diagnosis” 

Evyatar Av-Ron's MSc thesis[4] introduced the first top-down diagnoser, and also 
used wrong term dependencies, following Pereira's work. 
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Figure 9,13: Av-Ron's language territory 

Wrong
Solution

Missing
Solution

Inadmissible
Goal

Wrong
Output

Non
termination

Single
Step

Divide
&Query

GD&Q(N) Top-down Other 
Heuristic-
based

Declarative Source 
Debugging
(SD&Q(N), N&Q, 
SECURE(N))

Bug Manifestation Type vs. DiagnosisAlgorithm

Wrong term dependencies

 

Figure 9.14: Av-Ron's algorithms 

The implementation was also based on a meta-interpreter, recomputing suspect trees 
for missing solutions. 
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Figure 9.15: Av-Ron's implementation 
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K. Y. Koh [44] also developed a top-down diagnoser for wrong solutions, defined 
over a stored trace.T. Kanamori and others [43] developed a system using top-down 
diagnosis over a stored trace, explicitly integrated into a specification-testing-
debugging cycle. 

 

Lloyd's “Declarative Error Diagnosis” 

In [48] John Lloyd applies declarative debugging to logic programs with arbitrary 
formulas in the body. 
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Figure 9.16: Lloyd's language territory 

He also defined top-down algorithms for wrong and missing solutions. 

Wrong
Solution

Missing
Solution

Inadmissible
Goal

Wrong
Output

Non
termination

Single
Step

Divide
&Query

GD&Q(N) Top-down Other 
Heuristic-
based

Declarative Source 
Debugging
(SD&Q(N), N&Q, 
SECURE(N))

Bug Manifestation Type vs. Diagnosis Algorithm

 

Figure 9.17: Lloyd's algorithms 

His diagnosers are defined in a meta-interpreter.  
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Figure 9.18: Lloyd's implementation 

Naish: Missing solution improvements, NUDE 

In [57], Lee Naish improves Lloyd's missing solution diagnoser regarding 
incompleteness, and compares previous missing solution algorithms. In [58], he and 
others present the NU-Prolog Debugging Environment, which integrates declarative 
top-down diagnosers for programs with arbitrary body formulas, use of type 
declarations, static analysis, and test generation capabilities. 

Ferrand 

In [36] Gerard Ferrand reconstructed Shapiro's framework for Horn clauses, using a 
declarative semantics tolerating free variables in answer substitutions, and provided 
results showing some theoretical limitations. These are essentially variations of the 
following scenario for the wrong clause bug type: a diagnosis is a clause instance, 
eventually with free variables; therefore there may exist a more specific instance 
which is correct, with a more specific (and correct) head literal; but if the diagnoser 
is a logic program returning the clause instance as buggy... then any instance of the 
buggy clause should be buggy.  

Since in the present context we're concerned with just getting a diagnosis, in 
particular a diagnosis in terms of the textual program, we don't reach the point 
where these limitations would be troublesome. 
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Use of program specifications 

In [25][56], W. Drabent and others define a declarative debugging framework using 
oracle (specification) assertions, developing the ideas proposed in [83] and [31]. 
Their assertions can be simulated in our framework with additional clauses to the 
oracle statement relation o_s, taking implicit advantage of the subsumed_facet rule, 
as follows1: 

• true(G'): o_s(correct,solution(G')). 

• false(G'): o_s(incorrect,solution(G')). Notice that G' is a solution, not a goal call. 

• posex(G): o_s(incorrect,solution_set∅(G)). G being satisfiable, it must have a 
solution. 

• negex(G): o_s(incorrect,solution(G). Notice that G is a goal call, and this means 
that any solution for G is incorrect. 

In [23] a system is described using program rather than oracle specifications, in the 
form of a correct (although less efficient) version of the buggy program. 

Lichtenstein/Shapiro's “Abstract Program Debugging” 

In [47], Yossi Lichtenstein and Shapiro defined a framework for abstraction of 
computation results, to simplify the queries to the oracle, in particular for the 
debugging of Concurrent Prolog. Their definition of abstraction can also be used for 
the debugging of programs in higher-level languages, such as object programs 
executed by a logic program interpreter defining the language. 
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Figure 9.19: Lichtenstein's language territory 

Their main contribution, the use of oracle abstractions, is independent of the  
algorithms used; they use top-down. 

                                                

1 However we didn't implement this. 
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Figure 9.20: Lichtenstein's algorithms 

No details on implementation were given. 

Huntbach 

Although Huntbach's contribution was geared for parallel logic programming 
languages such as Parlog [40], as a side-effect he came up with a successful 
approach to deal with Prolog's cuts. 
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Figure 9.21: Huntbach's language territory 

He used the same algorithms as Shapiro: 
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Figure 9.22: Huntbach's algorithms 

His implementation stored part of the trace during computation, for the missing 
solution case, which in the case of a committed-choice language like Parlog is 
simpler than for Prolog. However it seems also to use recomputation for the wrong 
solution case. 
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Figure 9.23: Huntbach's implementation 
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Support for parallel logic programming  

Although support for parallel logic programming languages was on our wish list, we 
weren't able to address it for lack of time. Other people have done it with more or 
less success, suffering from the non-declarative nature of most of those languages. 
In all cases the diagnosing algorithms are essencially the same as Shapiro's[83] plus 
top-down.  

Lichtenstein and Shapiro's work on abstraction of computation results [47] (cf. 
above) was motivated by the problem of declaratively debugging Flat Concurrent 
Prolog programs [46]. Their basic idea is to associate to each goal solution a trace of 
inter-process messages relevant for the solution, and to avoid showing it (abstract it) 
to the oracle if possible (cf. discussion above on pretty-printing, section “Meta-
interpreted programs”, chapter 3). Their diagnosis process starts with an “abstract” 
phase, involving abstract queries, and terminates with one or more “concrete” (non-
abstracted) queries.  

Mathew Huntbach developed a diagnoser for Parlog[40][41], using the diagnosis 
algorithms of [83]. 

Lloyd and Takeuchi developed a diagnoser for Guarded Horn Clauses [51]. They 
experienced problems with its commit operator, akeen to the problems posed by 
Prolog's cuts, due to which we had to extend our oracle frameworh (cf. section 
“Changes to the oracle ”, chapter 4). Later [59] developed a diagnoser using 
heuristics to choose queries apparently only for the wrong solution problem. 

9.1.2. Non-declarative debugging 

Lawrence Byrd designed the first Prolog debugger [11], using a 4-port model to 
describe Prolog's execution, and suporting it through navigation commands. This 
model persists in most debuggers today, and naturally served us at the implemention 
level, although the declarative debugger user no longer interacts with it. 
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Marc Eisenstadt devised a textual tracer [33][32] which among other features 
included an expert-system like approach to bug detection, through the use of “bug 
clichés” (and by the way so did [52], in the context of a Prolog tutor). Later 
Eisenstadt and Mike Brayshaw developed the Transparent Prolog Machine[34], one 
of the most serious attempts to date to make good use of a graphical user interface 
for debugging, and incorporating also some existing declarative debugging 
algorithms [8]. The implementation is based on storing the full computation trace1. 

Mireille Ducassé and Anna-Maria Emde developed a programmable tracer called 
OPIUM, in connection with the SEPIA environment work at ECRC [26, 27, 28, 29, 
30]. Their system can easily be customized in Prolog, using some built-ins to access 
the tracer features, and thus even declarative diagnosers can be implemented. 

Regarding commercial implementations, the only one featuring declarative 
debugging is BIM Prolog's, which in addition to source tracing [16] supports top-
down and divide and query diagnosis as a post-mortem analysis on the computation 
trace; this is fully stored, albeit in an external database. 

There's been more work on logic program debugging, but unrelated to declarative 
debugging. In addition to commercial tracers, there's for example [77], [90], [19], 
[24], [60], [86]. A couple of useful surveys of the field are [9] and [28]. 

9.2. Research problems and opportunities 
Following are some issues left unexplored. 

                                                

1 Personal communication. 
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9.2.1. Improving the present framework 

Implementations 

The first obvious candidate for future work is a more efficient implementation (in 
terms of space and time usage, not oracle queries), either of the virtual trace storage 
architecture1, to achieve the low overhead forecasted in chapter 7, or of another 
architecture specialized for declarative source debugging; the first declarative 
source debugging algorithms were just introduced, and better ones may still be 
designed.  

For example, a simplified version of SECURE could be as follows: during 
execution, and for each program component, keep only the K first goal behavior 
facets that match it; then apply algorithm SECURE, using only this partial 
information. This suggests a very efficient implementation, but whose usefulness 
we're unable to quantify at this point.  

A technique which should prove useful in a more efficient implementation is static 
program analysis, in particular for declarative source debugging. For example, pre-
allocating data structures for suspect trees according to the possible goal calls in a 
program. 

Infinite computations were not dealt with in the present framework, because their 
bug manifestation is eminently non-declarative in nature. But this being one of the 
most frequent bug types, it seems advisable to have better support in a practical 
debugger. A possibility is simply to integrate an existing loop checker, to operate on 
the execution database of an user-interrupted computation. 

Now that a Prolog standard is nearer completion (cf. for example [82]), it should be 
possible to support a substancial part of it, thus maximizing the usefulness of 
declarative debugging. As a matter of fact this framework already covers most of 
the proposed Prolog standard requirements, including partial support for the use of 
I/O streams. 

                                                

1 Possible with some simplifications regarding the keeping of failures, a major source of overhead; 

this would have direct consequences on suspect trees for missing solutions, which must be taken into 

account. 
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Finally, a production-level implementation would benefit from a good integration 
with a test-generation system (e.g. [22] [58]). And perhaps the mechanisms for 
collecting source suspect sets may be reused implementing test generators. 

Static program analysis 

In addition to providing useful information to make the implementation more 
efficient, it remains an open question whether static analysis may be used to restrict 
suspects, or bug types.  

For example, given a program that passed a series of LINT-like tests (say, no single 
variable occurrences in a clause, no undefined predicates, consistent use of 
types/functors, etc.), can we derive a domain heuristic to affect debugging ? Or 
could we know when should a source bug manifest more easily through a series of 
calls, hence affecting the validity of the SECURE assumption? 

Oracle 

Query abstractions 

The use of “pretty-printing” in oracle queries seems essential for applications of 
declarative debugging to languages built within Prolog. Although the conceptual 
ground has been determined (cf. section “Meta-interpreted programs”, chapter 3, or 
the abstraction framework of [47]), practical applications beyond Definite Clause 
Grammars or Concurrent Prolog seem promising.  

Potential examples1: 

- Debugging of Delta-Prolog programs [72][20], by distinctly showing the event 
trace supporting a goal solution. 

- Debugging of Contextual Logic Programs[55], by showing the unit context of a 
goal call. 

- Debugging of Extraposition Definite Clause Grammars[62], showing the 
extraposition list, and pretty-printing the terminal list. 

                                                

1 Although some of them may require extensions to the present debugging framework, like adding a 

goal behavior facet, suspect tree node type and bug type, for example, as was done for output side-

effects in chapter 4. 
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Notion of query difficulty 

Oracle queries are not all alike, in the sense that answering them has different 
“costs” for the oracle1. 

For example, querying about the correctness of goal solution prime(11) is 
probably less costly than querying about the correctness of noun_phrase( 
[miguel,hates,examples], [], miguel : X # hates( X, 
examples) ). And obtaining answers to the query sequence {q(a), q(b), 
xpto(1989)} seems less stressing to a normal person than 
{q(a),xpto(1989),q(b)}, given the unnecessary “semantic jump” involved 
in the latter. 

Are there general guidelines to establish preference criteria among queries, reliable 
enough to make its implementation worthwhile ?  

This issue has not been dealt with explicitly yet (although the use of abstractions 
referred in the previous section tries precisely to minimize it). Some debuggers 
allow either the delaying of oracle answers when it finds them difficult [56], or do 
not impose a rigid ordering of queries, by letting the user contemplate many at the 
same time before answering (our own). 

9.2.2. Extending the scope of the framework 

Obvious candidates are Constraint Logic Programming (CxLP) languages[42], and 
parallel logic programming languages[84][72], to the community's interest in them 
on the long term. In both cases the complexity of the control mechanisms typically 
goes beyond the programmer's ability to visualize them mentally, and thus an 
automated debugging facility seems appealing. 

The main difficulty posed by CxLP is its “non-compositional” nature, in the sense 
that intermediate goal solutions have associated constraint expressions which 
typically involve other parts of the derivation. This suggests a hard time for an 
oracle, answering queries like “Given that <huge constraint expression>, is p(1,X) 
(such that <another huge expression>) a correct solution?”. Query abstractions seem 
the way to go, but defining good ones seems not trivial. 

                                                

1 Hence our previous use of the expression “query cost”, and its use in the algorithm definitions, 

although in practice we've taken it to be the number of queries. 
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Most existing parallel logic programming languages pose two kinds of difficulties: 
their non-declarative constructs and non-deterministic execution1. The first may 
eventually be dealt with similarly to Prolog cuts, and in fact Huntbach did it for 
Parlog [40]. The second seems to require either a debugging at the process level, by 
considering inter-process communication actions as input/output side-effects; or a 
global approach, involving the storage of a trace global to all involved processes, or 
execution under a sequencial interpreter. 

Another logic programming extension, well-founded semantics [37][65], can be 
encompassed by our framework's approach2. 

9.2.3. Possible applications outside logic programming 

Following is some speculation on the usability of the present framework for other 
than logic program debugging. 

Faultfinding 

Our work actually started heading for faultfinding, the idea being of capitalizing on 
the previous declarative debugging experience to build a generic logic-based 
faultfinder (as suggested by [64]). Since we found out that enough work was needed 
in declarative debugging, and since this was more consistent with out institutional 
context, we sticked to debugging until today. Others have followed the idea with 
success [39], using Shapiro's original framework.  

There is however a crucial difference regarding the use of declarative logic program 
debugging for faultfinding: the latter requires the generation of tests, and not all 
suspects are observable, i.e. they can't be queried about. 

On the other hand, basic faultfinding principles [79] could find their use in 
declarative debugging, though this has not been explored. 

                                                

1 Prolog's sequencial execution being “deterministic”, in this sense, since goal recomputations can be 

done reproducing exactly the computational behavior - hence our virtual trace storage approach. 

2 Personal communication, Luís Moniz Pereira. 
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Explanation facilities 

Explaining and justifying the result of a computational process to a user is essential, 
specially when the result is either very important or deriving from complicated 
mechanisms (e.g. spreadsheet formula1, expert system deduction). Our suspect sets 
seem a uniform representation from which to derive explanations in logic program - 
based systems. Existing expert system explanators usually have difficulties dealing 
with negative conclusions, and our uniform treatment of missing/wrong solutions 
seems adequate. 

Oracle queries can correspond to intermediate explanations, incorrect oracle 
statements being requests for explanation, and correct statements meaning that the 
user has understood the intermediate result (“OK, I understand why sales in Alaska 
have that value, now continue explaining me (the top bug manifestation, “why we're 
in the red for next quarter” ) ”)2. Therefore diagnosis algorithms become 
explanation planners, and all the paraphernalia of our framework contributes to give 
minimal and possibly useful explanations.  

Application to other languages 

Why logic programming? Could this work be used outside its original scope? Many 
of the previous chapters dealt with extending the previous declarative debugging 
frameworks for Prolog, and such improvements may be irrelevant; for example, 
non-deterministic languages do not require treatment of missing solutions. 

However, most of the present approach, just as was the case for [83], can be applied 
to any language with compositional semantics, i.e. such that its bug manifestations 
can be characterized by an oracle in a declarative (execution context - free) way, 
and no causal dependencies exist among intermediate result subcomputations other 
than through input/output arguments visible to the oracle. Or in our case, we tolerate 
such dependencies to a certain extent, through our partial treatment of database 
side-effects.  

                                                

1 The latest personal computer spreadsheets already come with basic “auditing” features, allowing 

browsing of antecedent and dependent cell formulas. 

2 Since we really fancy this sort of use for our technology, the HyperTracer diagnosis commands 

already use the expression “Why this goal behavior facet”, instead of a more terse “buggy goal 

behavior facet”. 
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It just happens that such languages are rare, because programming practice usually 
makes heavy use of side-effects. Prolog's side-effects are in practice less, and more 
localized, and hence in general logic programming seems more apt to benefit from 
the declarative debugging approach. Perhaps the proliferation of object-oriented 
languages improves the situation, through its stricter encapsulation mechanisms.  

Declarative source debugging is one of the contributions of this thesis usable 
outside logic programming, and seems to mechanize the use of the psychological 
notion of suspect set human debuggers use (or “slice”, as in [89]1). 

Use in embedded applications 

Prolog technology tends to be encapsulated in larger applications. Most software 
development is usually done in some other language, with a logic program acting as 
an “inference engine” (cf. for example the repackaging of traditional Prolog systems 
like Quintus's, in such a way as to allow linking of Prolog code directly with C 
applications). The ultimate declarative debugger should be able to start debugging 
C++ or Objective-C code, and transparently continue debugging the encapsulated 
logic program. 

                                                

1 He and Lyle explored the idea for the automatic debugging of Fortran and Ada programs in [53]; 

their “source suspect sets” are the statements affecting a variable with buggy value. 
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