
Declarativa 1

Web Application Maker 2.14

Manual (Preliminary Draft)

16-October-2009, WAM 2.13

Mário Araújo

Miguel Calejo

Sónia Mota
With contributions by Alexandra Baldaque,Carlos Éloi Barros,
Luis Carvalho and others

Declarativa 2

TABLE OF CONTENTS

1 Introduction ..5
1.1 What is it ...5
1.2 The WAM multilevel spaghetti problem ...5
1.3 History and credits...7
1.4 Application Portfolio ...7
2 WAM user interface: an application tour ..11
2.1 Northwind application ...11
2.2 Entry page ...11
2.3 Browsing around: opening lists and rows, and following lookups13
2.4 Personalizing a list...17
2.5 Finder fields, simple list searches, and list filters...20
2.5.1 Finder Fields..20
2.5.2 Simple list searching..21
2.5.3 List filters: searches to remember ..25
2.6 Changing and editing data ...28
2.7 User interface shortcuts ...32
2.8 Philosophy...32
2.9 GUI fragments/parts ..34
2.10 Foreign key graph..37
2.11 Database objects and how they impact GUI generation: GUI patterns38
3 WAM development tour ..40
3.1 Webifying the 'pubs' database..40
3.1.1 Step 1: Get a database..40
3.1.2 Step 2: Generate default WAMmodel..41
3.1.3 Step 3: Demo...43
3.2 Introducing the user interface for WAM applications..44
3.2.1 Personalizing the information displayed in a list ...44
3.2.1.1 Adding/removing columns... 45
3.2.1.2 Display search filter ... 46
3.2.2 Navigation between tables ...47
3.2.2.1 Detail to Master Navigation ... 48
3.2.2.2 Master to Detail Navigation ... 48
3.3 WAMmodel (explicit) improvements ..48
3.3.1 Adding labels/captions...49
3.3.2 Model-based row layout tuning ...51
3.3.3 Adapt a lookup for a row...52
3.3.4 Add a (deep) detail list...55
3.3.5 Make a detail list embedded in a row...56
3.4 Improving the database..57
3.4.1 Adding tables...57
3.4.2 Add a check constraint to a table ...58
3.4.3 Add fields to a table...59
3.4.4 Add a trigger with parameterized error message..62
3.5 ASP scripting...63
3.5.1 Improve the entry page ..63
3.5.2 Customize a row page..65
3.5.3 *** Enhancing appearance with CSS ..67
3.5.4 Add a browser client script ..67
3.5.5 Add an external ASP ...69
3.5.6 Tour end - architecture overview...70
4 Database server layer: meta information and WAMmodel........................72
4.1 WAMmodel: the WAM tables...72
4.1.1 WAM_PRESENTATION ...73
4.1.1.1 Multi-lingual support ... 74
4.1.2 WAM_ROW_COLUMN...74
4.1.3 WAM_LOOKUP_COLUMN..75
4.1.4 WAM_LIST ..75
4.1.5 WAM_LIST_COLUMN ...75
4.1.6 WAM_CRITERION..76
4.1.7 WAM_PROCEDURE_CALL ...76
4.1.8 WAM_ROW_GROUP ..77
4.1.9 WAM_TABLE_GROUP...77
4.1.10 WAM_TREE...78
4.1.11 WAM_CONSTRAINT_VIEW_USAGE...78
4.1.12 WAM_HELP...78
4.1.13 WAM_PREFERENCES..79
4.1.14 WAM_FINDER ..79

Declarativa 3

4.2 Treating VIEWS (almost) as tables ...79
4.2.1 VIEW updating..80
4.3 SQL and system permissions and how they are used...80
4.4 Predefined SQL user data types...80
4.4.1 wamdate, wamtime and wammoment..80
4.4.2 wamhierarchical1 and wamhierarchical2...81
4.4.3 wamphone ...81
4.4.4 wamemail, wamfax and wamurl ...81
4.4.5 wamimage ...81
4.4.6 wamexternalimage...81
4.4.7 wamexternalfile ...81
4.4.8 wamcustomresource (for customized file upload and download)81
4.4.9 wamcolor (for color pickers) ...82
4.4.10 wamrange ..82
4.4.11 wamglatlng (for Google Maps)..82
4.4.12 wamclass (for entity subclassing support) ...82
4.5 *** Support for free text search...82
4.6 Support for object-oriented modeling ..83
4.7 Initial WAMmodels to start development..83
4.7.1 Empty WAMmodel ...83
4.7.2 Default WAMmodel ..83
4.8 Better delete/update cascading for SQL Server..84
4.8.1 The two additional WAMmodel tables ..84
4.8.1.1 WAM_DELETE_RULES.. 84
4.8.1.2 WAM_UPDATE_RULES ... 84
4.8.2 Data manipulation procedures ...85
4.8.2.1 WAM_Delete... 85
4.8.2.2 WAM_Update.. 85
4.9 About SQL engine built-in meta information ..86
4.9.1 SQL-92's INFORMATION_SCHEMA...86
4.9.2 Additional VIEWs and tables ..86
4.9.2.1 WAM_DETAIL_LISTS .. 86
4.9.2.2 WAM_REFERENTIAL_CONSTRAINTS .. 86
4.9.2.3 WAM_STORED_PROCEDURES .. 87
4.9.2.4 WAM_AUDIT_LOG... 87
4.10 WAMmodel SQL utilities..87
4.10.1 Copying list preferences between users ...88
4.10.2 Copying WAMmodel definitions for a table to a view ..88
4.10.3 Editing foreign keys in a WAMmodel ...88
5 Web server and browser layers: the WAMLibrary objects........................89
5.1 Dispensing with ASP programming: the standard pages...89
5.1.1 A standard entry page: default.asp...89
5.1.1.1 Customizing the entry page.. 89
5.1.2 All other pages: standard.asp ...90
5.2 The default interface navigational structure...90
5.3 About custom pages and WAM directories ...92
5.3.1 File directory structure for a WAM application...92
5.3.2 WAM internals: WAMLibrary directory structure ..92
5.3.2.1 Files in root directory... 92
5.3.2.2 WAMLibrary subdirectories .. 93
5.4 Programming ASPs with WAM objects ..95
5.4.1 Including the WAMLibrary...95
5.4.2 Using the WAMStandardGUI object ...95
5.4.2.1 Implementing a page for a row, without customization.. 95
5.4.2.2 A row with some customization ... 95
5.4.2.3 A row with embedded list in the middle... 95
5.4.2.4 A page for a standalone list, without customization... 96
5.4.2.5 A page for a standalone list, with some customization ... 96
5.4.2.6 A page for a standalone detail list, without customization.. 96
5.4.2.7 A page for a standalone detail list, with user customization ... 96
5.4.3 Client Javascripting ...97
5.4.3.1 Predefined variables in a (customized) row.. 97
5.4.3.2 Predefined variables in a (customized) list ... 97
5.4.3.3 WAM high-level events ... 97
5.4.4 WAM events for server Javascript...98
5.4.5 Row objects ...98
5.4.5.1 WAMRow ... 98
5.4.5.2 WAMRowColumn... 98
5.4.5.3 WAMRowLookup ... 99
5.4.5.4 How to execute lazy lookups.. 101
5.4.6 Operations: WAMCaller..102
5.4.6.1 WAM caller user arguments: WAMA.. 102
5.4.6.2 How to control the enabled state of the WAM callers’ buttons (enabled/disabled)........................... 103
5.4.6.3 How to execute WAMCallers with more arguments, beyond primary key columns......................... 104
5.4.6.4 How to obtain results from a WAMCaller, and to open a window depending on them..................... 105
5.4.7 Lists: WAMList...105
5.4.7.1 How to create a customized List... 107
5.4.7.2 How to build lists referring tables from external DBS.. 107

Declarativa 4

5.4.7.3 Allowing multiple selection ... 108
5.4.7.4 Invoking row callers from a list.. 108
5.4.8 Other list objects..109
5.4.8.1 WAMListColumn .. 109
5.4.8.2 WAMListCriterion (search filter)... 110
5.4.8.3 WAMEmbeddedDetailList... 110
5.4.8.4 WAMStandaloneDetailList .. 111
5.4.9 Other objects..111
5.4.9.1 WAMTableGroup .. 111
5.4.9.2 WAMListGroup... 111
5.4.9.3 WAMFinder... 111
5.4.9.4 WAMFinderGroup... 111
5.4.9.5 WAMTree.. 111
5.4.9.6 WAMDialog .. 112
5.4.9.7 The WAMAPI object ... 113
5.4.10 How to customize the default entry page ...113
5.5 Global WAM variables: the global.asa file ..114
5.6 Global WAM styles and GIFs..115
5.6.1 GIF icons ...115
5.6.2 CSS styles..116
5.7 WAM cache and its freshness vs. the database..116
5.8 Custom user authentication..117
5.9 WAP support – the WAM Mobile interface ..118
6 Error and warning Handling...119
6.1 Raising and handling errors in the SQL layer ..119
6.1.1 Raising and handling warnings in the SQL layer...119
6.2 Raising and handling errors in the ASP (web server) layer..119
6.3 Raising and handling errors in the web client layer...120
7 WAMAdmin ...121
7.1 Browser-based WAMmodel editing ..121
7.2 WAM API Reference ..124
7.3 Developer Documentation ...124
7.4 Database structure Information..124
7.5 WAMmodel consistency with database structure ..124
7.6 Database Compare (dbCompare)...126
7.7 Available databases (dbInspector) ...126
7.8 *** Other WAMAdmin features..127
8 WAM installation and application setup..128
8.1 Using the installer..128
8.2 Manual installation ..128
8.2.1 WAMmodel setup..128
8.2.2 Web application setup..128
8.2.3 Removing WAM ...128
8.3 Browser limitations: Firefox and Safari ...129
9 Misc ...130
9.1 Hands-on workshop template ..130
9.1.1 Basics ..130
9.1.2 Installing WAM and simple WAMmodel tweaking...130
9.1.3 FK path wonders..130
9.1.4 Better databases ...131
9.1.5 Finally, some web application code!..131
9.2 WAM model-customization continuum and project methodology.................................131
9.3 Comparison with other tools..133
9.4 ***Performance considerations ...133
9.5 Help system ...133
9.5.1 User perspective ..133
9.5.2 Developer perspective: adding help content ..135
9.5.2.1 WAM_HELP Description tags... 137
9.6 Charts for lists ...138
9.7 References ...139

Declarativa WAM – The Manual 5

 Copyright Declarativa 2001-2009

1 Introduction

1.1 What is it

Declarativa's Web Application Maker (WAM) is a software development tool to build and maintain web interface front-
ends to relational database back-ends, using a model-based approach. It does not generate source code to be worked
upon: it is a runtime model-driven system.

Whereas existing model-based user interface development environments are based on models invented or adapted
specifically for the interface development process1, WAM is pragmatically based on a mainstream application model:
the relational database schema itself. One may get a flavor by reading "WAM development tour".

WAM takes a database with its built-in meta-data, and automatically defines a reasonable multi-user profile browser
GUI for data entry and browsing, ready for easy customization and extension. Further iterative application development
is based on pursuing two vectors of change:

· Enriching a simple meta-model, WAMmodel, a set of database tables complementing the built-in meta-data of
the database engine; and enhancing the database structure and stored procedures

· Higher-level and more robust ASP coding, as compared to current industry practice. The ASP development
experience is significantly enhanced by the WAM system because it exposes the GUI database model-driven
generation capabilities at runtime, through the WAMLibrary API.

WAM's innovation consists in the articulated combination of:

· Use of WAMmodel, a small database resident declarative model, complemented with the dynamic introspection of
the standard database engine's built-in meta-information; this minimizes conflicts between database schema
changes and application changes

· GUI personalization and improvement through the end application itself, which can incorporate WAMmodel
edition capabilities

· Just-in-time generation of reactive user interface fragments (already including browser and server data type
validation) from concise declarative specifications

· Making the GUI generating capabilities available to the application programmer at runtime for his/her customized
code, through a high level JavaScript API

This last aspect encourages a programming style that minimizes the traditional conflict between model-driven
development and customized "handcrafted" code. Because in addition to encapsulating data editing/browsing
functionality, as in other GUI components for database access, WAM runtime objects accept declarative (database)
model references as method arguments, much less verbose and minimizing code dependencies on database schema
changes.

As illustrated in the next section, it's easier and more robust to obtain the bulk of a form at runtime by writing new

WAMRow(SomeDBTable) than having to specify a SELECT statement, field titles and types, follow some data binding
convention, etc.

1.2 The WAM multilevel spaghetti problem

Web development, and in particular web database development, has made Meta programming a mainstream practice, as
developers routinely produce single code fragments amalgamating diverse levels, referring database objects, web server
objects and web client objects, such as in a PHP or an Active Server Page (ASP) file [Microsoft 2001a]. But, no matter

1 See [Griffiths et al 1998] [Silva 2000] for surveys

Declarativa WAM – The Manual 6

 Copyright Declarativa 2001-2009

how much syntactic coloring and sugaring IDE editors provide, the result is an organized mess and a maintenance
nightmare, as can be depicted for the Classic ASP platform:

Developer

DBMSCGIBrowserUser

… (HTML)
… (JScript at client)
… (JScript at server)
… (SQL)

…
<form … action='…'>
Customer <input … name='name'>
Phone #<input … name='phone'>
</form>
…

…
<script>
if (isNaN(phone))
 alert('Not a number');
</script>
…

…
<%
while (! results.EOF)
 …
%>
…

SELECT name, phone
FROM customer

customer

name varchar(50)
phone int

Although declarative object models are present in the browser and CGI layers, there's no use of the intrinsic DBMS
model. The programmer fabricates SQL strings and gets back structured table/view results, but he/she must maintain the
bindings with the other layers.

WAM simplifies the situation by introducing an extra Meta level whose domain of discourse is made of DBMS
concepts, and by encapsulating code generation functionality into runtime reusable objects based on the application's
data model:

… WAM Objects

Developer

DBMSCGIBrowserUser

customer

name varchar(50)
phone int

…
r = new WAMRow(customer);
…

"Phone #",
"Customer",…

WAM does not include business domain knowledge; it's intended instead to complement other tools, by adding its
database-oriented web interface development capabilities. It supports Microsoft SQL Server 2000/2005, Oracle and

Declarativa WAM – The Manual 7

 Copyright Declarativa 2001-2009

Informix as database engines2, Active Server Pages at the CGI layer, and Internet Explorer, Firefox and Safari
browsers; it also offers preliminary support for WAP phones.

*** To include later: comparison, in terms of focus and implementation, with ASP.net and Java Server Faces (they
focus on GUI abstractions, we focus on data layer abstractions, etc.). See 9.3 for more details.

1.3 History and credits

WAM emerged from Declarativa custom web application projects, and it now underlies all of them. At this stage WAM
development incorporates approximately 6 person-years of dedicated development over 2000-2007, reflecting 20 +
person-years of professional experience developing web applications plus another 15 on other platforms.

In addition to the authors other people worked on parts of the WAM implementation: Nuno Soares (WAMmodel
triggers, web showroom) and Rui Marante (WAP front-end). Thanks also to contributions to this manual by Alexandra
Baldaque, Luis Sousa, Hernâni Fernandes and Carlos Elói Barros.

1.4 Application Portfolio

WAM has been used to generate whole or parts of most web pages in the following projects, among others:

Customer / project Screen shots
Servisoft, Porto, a hardware/software
distributor: extension and re-implementation
over intranet/extranet of its Information
System, a custom-made "ERP light" system; to
cover all major activities from web click-
stream monitoring to invoicing, supply
shipment tracking etc. About 53 database
tables, 4 distinct user profiles, hundreds of SQL
stored procedures with business logic. Used by
7 people in-house, 300 dealers over extranet, a
few thousand "anonymous" users through
public site.

2 The present document focuses on the SQL Server version. Oracle 9 support will be available summer 2007; the
Informix IDS9 is slightly behind and may be discontinued in the future

Declarativa WAM – The Manual 8

 Copyright Declarativa 2001-2009

XSB, Inc., Stony Brook, NY, USA: front-end
to SQL Server database, project for DoD's
Defense Logistics Agency. About 30 tables, 2
distinct user profiles, many millions of records.

Vinho Verde Commission, Porto: regional
portal for the largest wine region in Europe,
where WAM is being used in all backoffice
modules; several extranet modules to remotely
fill forms for wine production declaration and
other processes.

Declarativa WAM – The Manual 9

 Copyright Declarativa 2001-2009

Regional Center for Craftsmanship (CRAT),
Porto: small intranet app to maintain their
database (places, products, artisans) with
images etc., including a synchronized public
online version. About 12 tables, 3 user profiles.
Entry page for internal users shown here.

Portuguese Ministry of Economy, North
Delegation, Porto:
Institutional meta-information repository
documenting all existing software applications,
shown here.

Declarativa WAM – The Manual 10

 Copyright Declarativa 2001-2009

Declarativa, Porto: application for invoicing
and project control, includes interface for
customers

Declarativa WAM – The Manual 11

 Copyright Declarativa 2001-2009

2 WAM user interface: an application tour

We’ll show the look and feel of a WAM application for a sample database, the well-known Northwind database3. The
images below were taken from an unfinished prototype running at http://showroom.declarativa.pt , a web site where
some WAM application prototypes can be tried and modified.

The WAM show room provides several versions of each application, with more or less elaboration by the developer.
We’ll use “NorthwindB”, an unfinished version totally dependent only on its WAMmodel: it has zero lines of code
beyond the original database structure.

2.1 Northwind application

The Northwind database application manages sales data for a fictitious company “Northwind Traders”, which imports
and exports specialty foods from around the world. The underlying database tables cover costumers, products, orders
and some related concepts:

Customers place orders, with the assistance of an employee, using a particular shipper. Each order line (detail) refers a
single product, which has a supplier; products are typified in categories. Employees may have a supervisor, and they
cover a sales territory; territories are aggregated in regions. Etc.

2.2 Entry page

This is the main page, from where data browsing and editing is available for the whole database:

3 A Microsoft sample database obtainable at http://www.microsoft.com/downloads/details.aspx?familyid=06616212-
0356-46a0-8da2-eebc53a68034&displaylang=en

Declarativa WAM – The Manual 12

 Copyright Declarativa 2001-2009

There we have four4 main groups (*** English captions missing for WAM_TABLE_GROUPs!) organized like this:

· The first group, Human Resources has four tables:

o Employees – which has all employees’ personal details.

o Employees by territory – where we can find which territories each employee works with.

o Territories – where we can find the territories where this enterprise operate.

o Regions – the main territory regions.

· Product Management has three tables:

o Categories – where we can see each category of products for sale.

o Products - where we can see all products details.

o Suppliers - where we can see all suppliers details.

· Sales has six tables:

o Demographic characteristics

4 The remaining (fifth) group refers tables whose information was not explicitly grouped by the developer

Declarativa WAM – The Manual 13

 Copyright Declarativa 2001-2009

o Customer Demographics

o Costumers - where we can see all costumers details.

o Orders - where we can see all orders main information like Order date, Shipped date, etc.

o Orders details - where we can see all orders lines irrespective of which order they belong to

o Shippers - where we can see shipping company details.

· The fourth group named Statistics contains several options to showing lists of data ordered by a certain criteria.

In each of first three groups we have a “finder field”, through we can quickly find specific orders given a (table primary
key) value.

2.3 Browsing around: opening lists and rows, and fo llowing lookups

To see data about a topic, we simply click the appropriate button; clicking the Products button in the ��������
	
�
�
�
�� group another new web page opens up, showing Product Name, ID, etc.:

The bottom data line shows the total of units in stock. Below that there’s a navigation bar, allowing navigation in the
data set the list is displaying. Clicking the �button��

Declarativa WAM – The Manual 14

 Copyright Declarativa 2001-2009

The other navigation buttons provide the obvious (if not, just hover with the mouse over them…) functions; �
navigates to the first data page, no matter what part of the data set is being show.

The Export button exports all list data (for the visible columns) into a HTML (but Excel-ready) file to download.

To view in detail (or to edit) a record, we need to click on the “magnifying glass” icon to the right of its data row.
For example, clicking that icon for the first line in the list opens up the following new web, with the full data of the
chosen product; at its bottom the product orders are shown5:

5 Actually, order (line) details.

Declarativa WAM – The Manual 15

 Copyright Declarativa 2001-2009

As you can see above, to the left of some field titles we have a “lookup button” ; this means that the field relates to
information in other database tables6, some of which may already be shown in the row page (for example, in the image
above SupplierID has the supplier company name to the right; this information is in the Suppliers table).

 When you hover with the mouse over the name of a field with a lookup, a link appears underneath the field title,
together with a help tip “Edit record”; for example, for the SupplierID field:

6 Or that the field is a (or part of a) foreign key in the Products table.

Declarativa WAM – The Manual 16

 Copyright Declarativa 2001-2009

Clicking the lookup field title link navigates to the related data in the Suppliers table, in a new web page:

In order to help the user navigate back to the other web pages, the application shows at the very top of the page a
“breadcrumb path”, with links to all web pages that lead directly to this one. Besides each page title there’s its primary
value if available; for example, the above link to the previous Product page has the number (17) because that’s the
Product ID there.

Declarativa WAM – The Manual 17

 Copyright Declarativa 2001-2009

2.4 Personalizing a list

A list can7 be personalized by the application user. The list can be ordered by one or more column fields; fields can be
dragged left and right, or omitted from the list; and additional fields can be added from related database tables or views.

The next image shows the Customers list, ordered by OrderDate, showing more recent orders first:

Below each field column title there are 4 or 5 small buttons, depending on the column being or not in one of the
extremities:

 sorts the list in ascending order by that field; this button also shows the current ordering, by displaying in black
(�

 sorts descending; the example list is thus

 removes (hides) the column from the list

�move the column to the right

�move the column to the left

Instead of using the two last buttons to shift a field a column at a time, the user can simply drag the column title with
the mouse.

7 If SQL permissions in the WAMmodel allow it

Declarativa WAM – The Manual 18

 Copyright Declarativa 2001-2009

A field column can also be resized with the mouse, by dragging the right boundary to the left or right. After resizing, the
user can return to the automatic size with double-click on the right boundary.

To add a column to a list, click on the “Add columns to a list” icon � situated on the right at the top of the list; the
remaining fields available for the list will be shown in a popup menu.

We’ll use this to add the OrderID field. After the list page refreshes, we’ll add the name of the employee who took care
of the order; for this we’ll navigate through the pop menu (Human Resources / Employee):

Declarativa WAM – The Manual 19

 Copyright Declarativa 2001-2009

The resulting list page now has 5 columns; after adding employee first name, and some more dragging and ordering of
columns:

Declarativa WAM – The Manual 20

 Copyright Declarativa 2001-2009

Each user has therefore his personalized lists, which persist between sessions and browsers; the next time the user
accesses the above list, from the same or another computer, it will appear with the same columns, ordering etc. In other
words, list configurations are part of the user preferences.

2.5 Finder fields, simple list searches, and list f ilters

Browsing around huge data lists is not an option to search for information. A WAM application will typically provide at
least 3 ways to search for something.

2.5.1 Finder Fields

The entry page has some “finder fields” next to list buttons, which can be used to type a primary key value and
immediately navigate to a single data row page- or to a list with the data compatible with the (ambiguous or partial) data
entered in the field. For example, typing 40 in the products finder field…:

…and hitting the Enter key opens up the Product with ID 40:

Declarativa WAM – The Manual 21

 Copyright Declarativa 2001-2009

Real WAM applications will typically use finder fields accepting data to be searched simultaneously against several
table fields (one at a time, until compatible data is found).

When a finder has several table fields, the user can restrict the search by clicking on the arrow and unselect the fields
that shouldn’t be tried to match:

2.5.2 Simple list searching

Data lists have the ability to let the user search for values - not just within the visible data in the page, but over the
remaining list data as well. Clicking the button8 at the top right of a list displays a search field over each column
title, immediately and without refreshing the web page:

8 IF: Inline Filter; waiting for a better icon!

Declarativa WAM – The Manual 22

 Copyright Declarativa 2001-2009

Then we can define a search condition by typing the specific criteria in each textboxes above the fields. For instance,
let’s search orders list by choosing only the orders created by the employee “Margaret”, typing this name of column
FirstName:

Declarativa WAM – The Manual 23

 Copyright Declarativa 2001-2009

After hitting the Enter key, or clicking the “A” button on the right, we get a list displaying only orders by Margaret9,
with a brief description, at the top, of the (SQL) search condition for the whole list:

9 Or to be more precise: all orders placed by an employee whose first name is Margaret (could be more than one
employee)

Declarativa WAM – The Manual 24

 Copyright Declarativa 2001-2009

The search condition can involve more than one field, and include partial conditions:

Declarativa WAM – The Manual 25

 Copyright Declarativa 2001-2009

After applying the new search condition (the conjunction10 of all individual column conditions), the resulting list shows
all orders for a customer whose company name starts with A, placed by an employee with first name Margaret:

“%” is a wildcard character usable in search fields; there are more, stay tuned for the next section.

2.5.3 List filters: searches to remember

A search condition can be stored as part of its list configuration, as a user preference; in that cases it is called a search
filter . To create a search filter click the popup menu at the top left in the previous page, and choose the New Filter
option:

10 See 2.5.3for more flexible query formula.

Declarativa WAM – The Manual 26

 Copyright Declarativa 2001-2009

Initially only the fields from the list base table appear, Orders in this case; the other two columns in the example list,
CompanyName and FirstName, belong to other tables. As in the lists themselves, it is possible to add column fields to a
filter definition, by clicking the button (it is convenient to augment the filter window size first):

The following filter will filter list data to include only orders from customers in Portugal:

Declarativa WAM – The Manual 27

 Copyright Declarativa 2001-2009

The field at the bottom lets the filter definition have a user friendly name, “Orders from Portugal”. Clicking the Apply
button closes de filter page and refreshes the list, applying the new filter:

Later on, in another session and even from another computer, the user can apply this or other filters (one at a time) by
using the top left popup menu. The menu also has an empty item option, which removes the filter, as well as “Edit
current”, to edit the currently applied filter:

Declarativa WAM – The Manual 28

 Copyright Declarativa 2001-2009

By default the filter page assumes a (AND) conjunction of column conditions; a radio button at the top is available for
disjunction (OR) instead. Each column condition as a NOT check box to negate it, and a button to remove the
condition (empty field or removed field can have a different meaning, for example for bit columns). The … button pops
up a help menu with the available search operators:

“In the huge set” supports large value sets, specified in a separate window.

List filters can be shared11, by copying the list URL to the clipboard using the share item in the filter menu.

2.6 Changing and editing data

To add a new Product, click the. button in the list page; as a shortcut, ctrl-click the
 button in the entry page. Afterwards a Product row page opens up, with all fields empty except the

default12 values:

11 If so allowed in global.asa, see 5.5

Declarativa WAM – The Manual 29

 Copyright Declarativa 2001-2009

Each field can be filled at will; there will be error messages if the data type is not right, for example UnitPrice must
have a number and not a date, etc. The ProductID field can be left blank, because it is a numeric key.

Let’s look more closely at the SupplierID field, which has a lookup button . Clicking this lets the user choose one
among the existing suppliers:

12 In the example, determined simply by SQL defaults.

Declarativa WAM – The Manual 30

 Copyright Declarativa 2001-2009

After clicking the return button �to the left of a record, the SupplierID and the Company Name textboxes on the New
Product window will be automatically fulfilled as shown bellow:

Declarativa WAM – The Manual 31

 Copyright Declarativa 2001-2009

Alternatively, if the SupplierID was known, it could be typed directly, without the need to open up a new page. For
example, after typing 16:

This is called a direct lookup. Yet another (and more likely) alternative: the user does not know the supplier ID, but he
knows the first two characters, so he’ll attempt an inverse lookup:

Declarativa WAM – The Manual 32

 Copyright Declarativa 2001-2009

After entering tab, and because there is more than one supplier starting with “Fo”, a new list page appears13:

And, like before, the user should pick the supplier by clicking one of the �buttons. Finally, the user can click the Save
button in the Product page.

To avoid waiting for a lookup match, WAM has a type-ahead feature which allows the user to keep filling the form
while the system is still searching for a match (*** IMAGE HERE ***).

When a direct lookup or an inverse lookup doesn’t produce any results, the user has the option to choose between:
creating a new one, choosing one from the list or cancelling the operation. However, if the user previously knows that
the Supplier doesn’t exist, the user can create it directly by pressing Ctrl-click on the “lookup button” . After
completing the creation, the SupplierID will be automatically fulfilled.

To delete a Product (or any other database record), either open the record from a list and hit the Delete button, or
simply click one of the �buttons in the list. In both cases a confirmation dialog will be displayed, and error messages
will be shown if the deletion violates database integrity.

2.7 User interface shortcuts

There are several shortcuts available on all WAM generated pages:

· Hitting ALT-S in a row saves the row

· Ctrl-click in a save button (in a row) saves and opens up a "clone" of the saved row

· Ctrl-click in a list button (e.g. in a ListGroup) opens up an empty row for its base table, typically to create a
new record

· Ctrl-click in a lookup button opens an empty row to create a new record, and fulfill the lookup field.

· To copy the current URL to clipboard, we can use the link “This page was created in X seconds.” present in
the footer.

2.8 Philosophy

This section contains a preliminary description of a “WAM theory for GUI generation”, for applications such as
referred in 1.4 and detailed in “WAM user interface: an application tour”. WAM and the enclosing web server can be

13 If only one such supplier existed, it would be copied to the Product fields as in the direct lookup scenario

Declarativa WAM – The Manual 33

 Copyright Declarativa 2001-2009

seen as an interpreter for a theory on how to generate web pages from a WAMmodel instance, in answer to HTTP
requests.

The current WAM version implements the principles below; future R&D may focus on better generation from the same
or related database server information.

Consider a human interface for a database, running as a web browser (intranet or extranet) custom-made application
with many inter-linked pages.

How much of it could be determined just by the database-server SQL layer alone (data structure, triggers, stored
procedures), avoiding the pain of developing a web Graphical User Interface? Would it be possible to “infer” the
missing code needed to construct the GUI that must run in the web server/CGI and browser layers?

WAM is a tool for a partial “yes” to the above challenge. WAM’s idealistic vision is to be a GUI function deriving the
interface from the application database alone, through the following formula14:

Web interface = wam(Database Meta Information)

There is however a limit to the meta information included in database engines; for example, linguistic information is not
there. Therefore WAM uses a few extra database tables, where additional (but not redundant) meta information can be
placed by the developer, the WAMmodel:

Web interface = wam(Database built-in Meta Information + WAMmodel)

Reality makes this still too radical for most real world projects, so WAM effectively supports a more general and
realistic vision:

Web interface = wam(DB Meta Information + WAMmodel) + Custom pages using wam objects + Other pages

The next picture shows the overall architecture of a WAM application, with the user interface boundary showing the
software components involved in the above equation:

14 If the reader feels inclined towards the formal, he may regard the right side of the equation as "set of URLs that the
web application responds to, satisfactorily"

Declarativa WAM – The Manual 34

 Copyright Declarativa 2001-2009

Development of a WAM application can be depicted as follows; traditional database design and web programming are
complemented with WAMmodel editing:

For the developer of custom ASP pages using WAM object, the WAMLibrary API implements a higher "semantic" level
over the Microsoft Active Data Objects that support it. Rather than dealing with RecordSets, data field validations, SQL
and HTML generation and many other concerns, the developer can delegate GUI generation, database access
orchestration and navigation issues to the WAM objects, in whole or in part depending on application requirements.
This is accomplished by using object constructors and methods referring concise database concepts - such as table or
view, foreign key path, etc. - saving the developer a lot of details - data types, joins, table structure, etc.

Therefore WAM encourages the developer to store more application knowledge into declarative models and database
server logic, and less in CGI or browser-side procedural code, or in redundant models. This approach pursues fast and
incremental development, as well as easier maintenance (mostly done in the database layer), in comparison with other
methods requiring heavy CGI or client-side coding.

2.9 GUI fragments/parts

WAM is essentially an application front-end fragment factory, which works based on minimal declarative specifications
closely tied to the underlying (database) application. It serves a particular class of GUI front-ends, those interfacing
database applications.

Due to the fact that "all database GUIs are similar", at least to a certain extent, it is possible to identify recurrent
fragments, each comprising GUI widgets, scripting, database access methods, error handling etc.:

GUI fragment Description Example
Row A web page to display/edit a record or view tuple

Declarativa WAM – The Manual 35

 Copyright Declarativa 2001-2009

Row field A row element for a table column, possibly with
a title

Lookup field Displays a field in a related table; typically one or
more lookup field appears next to the relating
foreign key

List A web page displaying a subset of a table, view
or user-defined join, including user-defined
sorting and navigation over the record set,
possibly filtered with a search filter, data
exporting button, etc.

List column Displays all values of a database column in a list

Filter A web page, closely linked to a list, to specify list

filter criteria over columns in the list table and
related tables

Embedded
(detail) list

Like a list, but restricted to the context of a
related table; appears inside the master row

Declarativa WAM – The Manual 36

 Copyright Declarativa 2001-2009

Standalone detail
list

Like Embedded list, but appears in a standalone
web page, and includes a description of the
related table context, using lookup fields

Procedure
invoking button

A button which invokes either a database stored
procedure or an external (ASP) web page

List set A set of buttons to navigate to lists in the

application

Finder Similar to a row field, but providing quick search

and navigation to a single tuple row or to a list

Path A “breadcrumb” style hierarchical navigation
style, appearing at the top of WAM generated
pages and providing direct navigation to previous
application pages

Error Report Transact-SQL or JavaScript originated multi-

lingual error alerts, followed by field focusing if
appropriate

Application main
(entry) page

A default web page with buttons accessing all
lists, and some finders

In the next sections we'll see how WAM is guided to produce the above fragments. These fragments can also be used by
the developer in his custom pages, typically to obtain more control over appearance or functionality of lists and rows.

Declarativa WAM – The Manual 37

 Copyright Declarativa 2001-2009

2.10 Foreign key graph

Relations between database tables are in important ingredient to GUI structure. In order to better use it, it's convenient
to define its foreign key graph (abbreviated FK graph); this is implicit in the built-in database schema information,
and is defined as follows:

- Each table or view in the database defines a graph node

- Each relationship FK/PK between a table Detail with foreign key FK and table Master with primary key PK
originates a directed edge from the Detail node to the Master node

This definition is nothing more than the formalization of the database diagrams shown by (for example) SQL Server
Management Studio, where the foreign keys can be seen in the edges:

In addition, in order to support VIEWs as "real tables", we'll define some additional meta information,
WAM_CONSTRAINT_VIEW_USAGE , to simulate (definition of) foreign keys between VIEWs too. This meta
information defines additional FK graph edges:

- Each tuple in table WAM_CONSTRAINT_VIEW_USAGE originates a directed edge from its Detail_table (or
view) node to its Master_table (or view) node; this WAM table allows the use of relationships involving views

The foreign key graph is an important piece of WAM’s conceptual background, because foreign key paths (or FK
paths) are used as names (hence generation specifications) of GUI fragments. For example, consider the following path
in the same database diagram:

Declarativa WAM – The Manual 38

 Copyright Declarativa 2001-2009

This path can be represented (for WAM) as FK_Orders_Customers,dbo.FK_Order_Details_Orders (a sequence of
schema.tableName; the first schema is omitted. Notice that this concise representation is able to abstract from some
lower level details, such as which are the primary key columns of each table, which are the foreign key columns, what
SQL expression should be used to implement the joins, etc.

We'll now introduce the WAM interface generation principles.

2.11 Database objects and how they impact GUI gener ation: GUI patterns

The previously defined GUI fragments can be used to solve database web interface design problems. In the next table
we overview the "recipes" for solving these problems:

Database concept or its facet Consequence on GUI

Table or View A table record can be visualized and edited in a row. Table
records can be visualized and filtered in a list. A finder
can provide simple front-end navigation.

Column A row field, a list column, a looked-up column

Data type Row field and list column validation, formatting

User-defined SQL data type Special formatting, validation, user navigation (e.g. email,
URL, image)

Primary key Determines default auto-numbering policy, avoiding the
need to fill the key fields

Check Constraint Restrict edition at the GUI, introspect into admissible
values

Permission Hide or disable GUI objects and navigation links for a
particular user or group

Declarativa WAM – The Manual 39

 Copyright Declarativa 2001-2009

Database objects have programmer names Use a presentation function: WAM_PRESENTATION

Foreign key path (possibly with one FK only) Minimal specification of lookups, detail lists, user-driven
joins in lists

Foreign key graph Default navigational structure

Table tuples representing persisted objects For a particular object persistency strategy only, see
section 4.5

Each line in the table can be seen as a "pattern", in the sense of [Patterns 2001], and so the whole can be seen as
"WAM's GUI pattern catalog". We find this somehow related in spirit to efforts like [Coram and Lee 2001], although in
our case with a more restricted scope - database applications.

External presentation strings are absent from database engine meta-models, hence the central role
WAM_PRESENTATION assumes in the WAMmodel.

Navigational web link structure will reflect the relational data structure; WAM provides an automatic structure (see
section 5.3.1).

Declarativa WAM – The Manual 40

 Copyright Declarativa 2001-2009

3 WAM development tour

To overview WAM let's take the venerable 'pubs' database example15, build a web server front-end for it with a single
click, and demo it. Afterwards we will enhance it.

NOTE: you can visit http://showroom.declarativa.com , to try most of the following steps online;

Database application enhancement with new requirements can be a nightmare, as hidden dependencies manifest,
causing the application to have to be updated in more than one place, such as data dictionary, form objects, GUI
scripts… To minimize this problem, WAM promotes a GUI development style that is mostly (database) model-driven.
The next sections illustrate development styles with increasing power and decreasing maintainability:

· "Single click" - interface obtained automatically from the initial database

· Improving the WAMmodel

· Improving the database

· ASP scripting

The following sections will focus on changing the application, not using it; for that perspective refer instead to “WAM
user interface: an application tour”.

Although the following steps currently take more than a single click, they're generic red tape similar for any application,
and can be automated - no step in this section is specific to the 'pubs' application. The WAM Installer provides a wizard
doing it.

3.1 Webifying the 'pubs' database

We’ll start with getting the WAM up and running on a machine configured with SQL Server and IIS. We’ll use the
‘pubs’ database to illustrate this installation and the following examples as it comes with SQL Server and this way we
don’t require users to have their own database right from the start.

3.1.1 Step 1: Get a database

Here's a diagram for the venerable 'pubs' example database, as produced by Microsoft SQL Server’s Enterprise
Manager tool, depicting both each table structure and their foreign key master-detail relationships:

15 Available as a Microsoft sample database at http://www.microsoft.com/downloads/details.aspx?familyid=06616212-
0356-46a0-8da2-eebc53a68034&displaylang=en

Declarativa WAM – The Manual 41

 Copyright Declarativa 2001-2009

WAM prefers a database having primary keys defined for all tables in the application, so we've declared primary keys
in discounts and roysched . Otherwise the application would function, but the data editing capabilities would be
nonoperational for those two tables. This is an important issue to take into account when webifying your database.

3.1.2 Step 2: Generate default WAMmodel

There is the possibility of running a single sequence of generic scripts that create the WAMmodel tables and generic
stored procedures in database 'pubs', and that populate those with a default set of WAM meta-data, generated from the
initial database structure. However, the WAM Installer utility does this automatically.

The WAM Installer can be executed by double-clicking on the setup.wsf file, from the WAM zip package.

Declarativa WAM – The Manual 42

 Copyright Declarativa 2001-2009

Note that it is assumed that the user has MS SQL Server installed on his machine and an IIS web site configured.
Starting the WAM Installer will ask us where to configure our web application and which database to use. Then it will
take us into the following screen on our web browser:

Hitting next will take us too:

Declarativa WAM – The Manual 43

 Copyright Declarativa 2001-2009

In our case we are overwriting the existing WAM Model, as we had already installed a version of WAM on the server.
Hitting Next and then finish will complete the installation of WAM in our server and associate it with the ‘pubs’
database of MS SQL Server:

3.1.3 Step 3: Demo

Open up the web application link in the previous screen (in the following screen shots the URL address will be different
from yours). As nothing was stated yet regarding strings or external representations, initially database names are used as
captions:

Declarativa WAM – The Manual 44

 Copyright Declarativa 2001-2009

The above screen image shows the generic WAM application entry page for 'pubs', built from its WAMmodel:

· The 12 buttons provide navigation to lists for the 11 tables and 1 VIEW in the database.

· The caption/field pairs at the top right allow quick navigation to lists and records for the two most "interesting"
tables in the application. Each caption/field pair constitutes a Finder.

Entering a value in a Finder field causes a simple search to be performed on its table, followed by navigation to a single
record or to a list depending on how precise the value is. Clicking the field title navigates to the list, as suggested by the
displayed ToolTip (near the invisible mouse cursor�).

WAM uses a foreign key graph - based heuristic to automatically pick titles and publisher as "interesting tables" for
pubs, and by default determines their primary key columns to be the columns to search. Some simple scripting can tune
or expand this capability dramatically, adding multi-column and type sensitive searching, as will be seen later.

3.2 Introducing the user interface for WAM applicat ions

This section provides an abridged description of the user interface functionality available to all WAM applications, with
an eye on using its personalization aspects for development; for a more detailed and use-focused explanation see instead
“WAM user interface: an application tour”.

3.2.1 Personalizing the information displayed in a list

Let's hit the 'dbo.titles' button and get the initial titles list, and hit the button at the top right:

Declarativa WAM – The Manual 45

 Copyright Declarativa 2001-2009

On the absence of more information, WAM uses a generic data type-driven heuristic, initially configuring the list to
display just the type and pubdate columns. However the user can add other columns, with the hierarchical popup menu
shown; those can be columns either in the base table for the list, or in any directly or indirectly related table or view, as
can be seen by the selected publishers table.

3.2.1.1 Adding/removing columns

Column adding/removal, sorting and search filter configure a list instance personalized to each user, persisting in the
database user preferences. After a few (end-user) clicks he/she can get a more useful list, listing more expensive titles
first and including publisher name and state. Additionally, the user may also rearrange the order of the several columns
by dragging each column title to where it wants it to be placed:

Declarativa WAM – The Manual 46

 Copyright Declarativa 2001-2009

Notice that the URL for the page is a generic WAM page (actually the same as the previous screen; by default the page
address is not displayed).

3.2.1.2 Display search filter

Lists can have a search filter applied. By using the popup menu at the left the following page opens up; using the

button to add an additional data field to the filter definition…:

After typing "business" in the type field and "Business stuff" in the field at the bottom, and Apply ing the filter, the list
appears with the search filter applied:

Declarativa WAM – The Manual 47

 Copyright Declarativa 2001-2009

The popup menu below shows the ability of WAM lists to have a set of filters defined and one (or none) picked as
current Note that you can also add columns to your search filter and state what conditions will be applied on the chosen
columns.

Search filters are also part of the list preferences, which reside in WAMmodel tables and can be copied, for example
from expert to novice users. As they're server-based they'll hold consistent for the same authenticated user whenever
he/she logs in from any browser.

3.2.2 Navigation between tables

Getting back to the list, let's click the magnifying glass to see a single record displayed in a WAM row page:

The page displays all fields for the table, together with default (so far unspecified…) captions/titles, using a simple top-
down layout policy; other policies are possible as will be seen below. Field database types are used to format and
validate values.

Declarativa WAM – The Manual 48

 Copyright Declarativa 2001-2009

The table’s relational role entails the potential for detail to master and master to detail navigation. As can be seen in the
database diagram, 'titles' has one master table and 3 detail tables.

3.2.2.1 Detail to Master Navigation

First, let's examine detail to master navigation. pub_id is a foreign key into table publishers, and therefore WAM
automatically creates a subjacent lookup object, providing the following abilities:

· Display values for a set of columns looked-up in the master table; a heuristic was used by WAM to initially pick
pub_name as the single looked-up column; notice that this capability is akin to the automatic join performed in the
titles list above.

· Automatic navigation to the related master record (the image was taken with the mouse hovering the "pub_id" title,
hence the displayed ToolTip);

· Automatic navigation to a list of publishers from which to pick one, by clicking the upwards arrow

3.2.2.2 Master to Detail Navigation

Now for master to detail navigation, roysched , titleauthor and sales are detail tables, so initially there will be
buttons in the row to navigate to standalone detail lists (as opposed to row-embedded detail lists, which we'll see later).
Here are the standalone detail lists after we click into the titleauthor and sales buttons, and have a user adapt the lists to
include related columns:

Notice that each detail list includes a description of the (constraining) master record, initially (just) the primary key
column. Simple configuring of the WAMmodel can refine this default policy, as will be seen later.

3.3 WAMmodel (explicit) improvements

So far we only saw (list) changes we can operate on the application’s output simply from its interface. In the following
sections we will enhance the pubs application by filling or changing WAMmodel tables16. The WAMLibrary runtime
system will automatically reflect the changes into the interface when the application pages are refreshed.

Most of what follows could also be performed through WAMAdmin (cf. section 7.1), instead of through a SQL script
utility as shown

16 Actually, the previous list changes already reflected into the WAMmodel as well, cf. section 4.1.5

Declarativa WAM – The Manual 49

 Copyright Declarativa 2001-2009

3.3.1 Adding labels/captions

It's time to beautify the application, by making it use more meaningful captions to the interface rather than database
object names. Opening up http://www.declarativa.com/pubs/WAMLibrary/Admin reveals a WAM administration
facility to edit the WAMmodel tables:

Clicking the WAM Presentation button shows one of the WAMmodel tables:

The WAM_PRESENTATION table defines the external strings for the application in a particular language. Each
database/WAM object can get a caption (to be interpreted as list column title, field label, page title etc.) and a ToolTip.
The above list was already personalized to include only records for English which require revision - in the initial
application setup step WAM names all captions with the database object name, prefixed with ":".

WAM_PRESENTATION can be filled either using the WAM Administration application above or by dumping data into the
database from some other tool more convenient for the engineer, say a SQL Query tool or something closer to the users
like Excel.

The pubs database has 11 tables totaling 64 column fields. Each field can appear in a row, list, lookup etc., and all can
have unique captions defined, so for the pubs application several hundred captions would need to be inserted. However
WAM uses several inheritance rules to "get away with" not having to define all captions, at least until the moment users
demand them� . For example, columns in lists and detail lists inherit row field captions, and views inherit captions from
their base tables. These rules can be over-ridden simply by adding records to WAM_PRESENTATION.

So we'll now define captions for most table fields, as they should appear in rows, plus another caption for each row title,
list title and looked-up column. The next screen shows an SQL Server Enterprise Manager window with the first of the
relevant records in WAM_PRESENTATION:

Declarativa WAM – The Manual 50

 Copyright Declarativa 2001-2009

Our first list will now look as follows:

Notice that list columns are inheriting caption and ToolTip from the row field information of their base tables.

In order to show-off WAM's multilingual capability we also added a few Portuguese records to
WAM_PRESENTATION. After the user reconfigures the browser to prefer Portuguese the previous page will appear
refreshed instead as:

Declarativa WAM – The Manual 51

 Copyright Declarativa 2001-2009

Notice how all application strings now appears in Portuguese. Data of course continues in English, and the filter
"Business stuff" remains untranslated because the user wrote it.

3.3.2 Model-based row layout tuning

Controlling layout is necessary, namely in rows, and ultimately may require ASP scripting as will be seen later. WAM
performs a simple row layout based on database table column order and field type information, assuming that the order
chosen by the programmer is, more often than not, pertinent to the GUI.

Were we model-driven fundamentalists we would have fattened the WAMmodel with layout information; we chose
instead to keep the WAMmodel as lean as possible, and so column ordering is not there (except for lookup columns,
which have no direct database concept counterpart), nor is field grouping. A different field ordering can be specified
with an extra database VIEW, thereby defining a different row page, or with ASP scripting.

Nevertheless we wanted a minimal way to "beautify" forms with some form of "field grouping" in the WAMmodel. So
we borrowed a Microsoft Word declarative layout mechanism it uses in paragraphs, a keep with next bit in the
WAM_PRESENTATION, which conditions "line" breaks in a WAM row page.

For example, let's set to true those bits for Price, Advance and Royalty in the title row. This will now be shown as SQL
instructions, to give a flavor of what's possible with direct WAMmodel manipulation:

UPDATE WAM_PRESENTATION SET keep_with_next=1
WHERE type='ROW_COLUMN' AND schema_name='dbo' AND
name IN ('titles.price', 'titles.advance','titles.r oyalty')

Now the "Cooking with Computers: Surreptitious Balance Sheets" record will appear with the sales-related numbers
together:

Declarativa WAM – The Manual 52

 Copyright Declarativa 2001-2009

Note that these changes could have been performed from within the WAM Admin. As that is a straightforward process,
we’ll include the SQL versions here from now on.

3.3.3 Adapt a lookup for a row

Let's go back to the entry page, open up the Sales list and see one of its records:

WAM did a reasonable guess for the looked-up column to use representing the related store, but probably not for the
title.

Let's see now how to hide the Title# field, which users might dispense with, and show instead the price, title and the
country of its publisher. This requires solely a few records changed in the WAM tables; notice how the lookup columns
are named with the supporting foreign key (or in general, foreign key path) and are associated with the row they serve:

Declarativa WAM – The Manual 53

 Copyright Declarativa 2001-2009

-- Remove the current (bad) lookup:
DELETE FROM WAM_LOOKUP_COLUMN
WHERE table_schema='dbo' and table_name='sales' and constraint_name='FK_sales_titles'
-- Add price and title:
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'sales', 'dbo', 'FK_sales_titles', ' price', '', 1, 1, 1)
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'sales', 'dbo', 'FK_sales_titles', ' title', '', 2, 1, 1)
-- Add country; since it is not in the master table a foreign key path must be given:
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'sales', 'dbo', 'FK_sales_titles', ' country',
'dbo.FK_sales_titles,dbo.FK_titles_publishers', 3, 1, 1)
-- Add a label to the looked-up price:
INSERT INTO WAM_PRESENTATION
VALUES('en', 'LOOKUP_COLUMN', 'dbo', 'sales+FK_sal es_titles+dbo.titles.price', 'Price', 'Book
price', 0, 'Optional developer comment here')
-- Put the date closer to the order code:
UPDATE WAM_PRESENTATION SET keep_with_next=1
WHERE language='en' AND type='ROW_COLUMN' AND sche ma='dbo' AND name='sales.ord_num')

WAM supports applications over several database schemas, so names must be qualified with the enclosing schema, dbo
in the example.

Here's the result:

The last fields in the WAM_LOOKUP_COLUMN records specified an ordering among looked-up columns, and also that they
are editable (see WAMmodel section); this means that inverse lookups will be possible: the user may type part of a
string in a looked-up column and the system will either fill-out all the foreign key and looked-up columns, or it will
open up a list window for a related record to be picked.

Let's go back to the Sales list, click "New" to add a Sales record, and:

· type 'Bar' in the (looked-up) store field,

· type an order code,

· type "2" in the date field,

· type quantity and terms

· type "USA" in the (looked-up) price field

Here's the resulting page, just before exiting the (looked-up) country field:

Declarativa WAM – The Manual 54

 Copyright Declarativa 2001-2009

Notice that 'Bar' caused a successful inverse lookup in table stores (as only one record had store name beginning with
Bar), and that the system expanded "2" to a full datetime value; were there database default values defined for the table,
say for Qty, they would have been used.

On exiting the country field another inverse lookup is attempted; unlike the store lookup this one is ambiguous, so the
following titles list pops up, in the special "zoom" context used to disambiguate lookups:

Notice how the records in the master (titles) table are restricted with the country condition in its master (publishers);
WAM takes care of automatically building the underlying outer join. Clicking one of the upwards arrows picks a record
back into the new Sale record:

Declarativa WAM – The Manual 55

 Copyright Declarativa 2001-2009

3.3.4 Add a (deep) detail list

We'll now see how to create a detail list for a row, by adding a detail list of titles to the existing store row, which
initially got only navigation to its (immediate) detail tables, discounts and sales . This detail list will actually be a
button with the same functionality of “Store Discounts” and “Sales” but related with Titles.

For this we'll again resort to the concept of foreign key path, and change the WAMmodel:
-- define a detail list based on the 2 endpoints of the FK path, linked to an editing row
-- for titles, and showing list search filters:
INSERT INTO WAM_LIST
VALUES('dbo', 'dbo', 'FK_sales_stores,dbo.FK_sales_ titles', 'dbo', 'titles', 1, null, 0, 1, 0)
-- define a string for the button and list title:
INSERT INTO WAM_PRESENTATION
VALUES('en', 'LIST', 'dbo', 'FK_sales_stores,dbo.FK _sales_titles', 'Titles sold', 'ToolTip could
go here', 0, '')

Declarativa WAM – The Manual 56

 Copyright Declarativa 2001-2009

-- provide more context to the detail list:
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'FK_sales_stores,dbo.FK_sales_titles' , 'dbo', 'FK_sales_stores', 'stor_name', 1, 0,
1)
-- while we're at it, put the zip code next to the city:
UPDATE WAM_PRESENTATION SET keep_with_next=1
WHERE language='en' AND type='ROW_COLUMN' AND sche ma='dbo' AND name='stores.state'

Here's the result, when the mouse is hovering over the new button:

Clicking the button displays the new list, already customized by the user who added a titles column and a related
column from publishers (the mouse is hovering over it, hence the displayed ToolTip):

Were captions desired near the store description (lookup), it would be necessary to add just one or two records to
WAM_PRESENTATION.

3.3.5 Make a detail list embedded in a row

So far we've seen standalone detail lists: detail lists invoked from a row, but which appear in a separate page.

Many times it's useful to embed a list in a row; all that's involved to make an existing detail list embedded in the row for
its master table is removing the correspondent records from the WAM_LOOKUP_COLUMN table, and optionally
hiding its search filter popup menu:

Declarativa WAM – The Manual 57

 Copyright Declarativa 2001-2009

DELETE FROM WAM_LOOKUP_COLUMN
WHERE table_schema='dbo' AND table_name='FK_titleau thor_title'
UPDATE WAM_LIST set show_criterion=0
WHERE user_id='dbo' AND table_schema='dbo' AND tabl e_name = 'FK_titleauthor_title'

On reopening a title row, and after the user picked the 4 columns shown in the list, here's the result, a row with an
embedded detail list:

Notice that titleauthor is a "link" table implementing a N-N relationship between authors and titles; although it was
the base for defining the detail list, the WAM automatic join and user preference mechanisms allowed an user to
actually tailor the list to effectively become "authors for a title", and not just "titleauthor link records for a title".

At this stage we have an application that is capable of displaying and editing all 'pubs' data in a nontrivial manner,
including type checking in the browser layer, database layer error handling, and other features. The application at this
stage consists just on the generic WAMLibrary runtime system together with the default WAMmodel, which was
obtained automatically from the database, as well as some tuning in the WAM Admin area.

In the next chapters we will improve it by performing some database improvements and ASP scripting.

3.4 Improving the database

We'll now make some changes to the database, enhancing the interface but still without ASP scripting.

3.4.1 Adding tables

The first issue that could occur during implementation phase of a database based web application is the changing of the
database itself. In its most simple case, this would mean adding/removing tables. Will now add a table called ‘themes’,

Declarativa WAM – The Manual 58

 Copyright Declarativa 2001-2009

where we’ll store possible themes for each title, and associate it with the ‘titles’ table. As each title may have several
themes, and each theme can be subject of a single title, we’ll have a connection table in between:

(…)

3.4.2 Add a check constraint to a table

Table constraints allow a declarative style for specifying some restrictions on data. Let's suppose that we wish to
constrain the field titles.type to the set of values present in the example database:

ALTER TABLE dbo.titles ADD CONSTRAINT CK_titles
CHECK ([type] = 'UNDECIDED' or [type] = 'trad_cook' or [type] = 'psychology' or [type] =
'popular_comp' or [type] = 'mod_cook' or [type] = ' business')

 WAM detects this particular form of table check constraints at runtime, to automatically improve the GUI with a popup
menu:

Declarativa WAM – The Manual 59

 Copyright Declarativa 2001-2009

3.4.3 Add fields to a table

WAM includes a few "user-defined data types" providing additional validation, formatting or editing functionality in
the GUI (See Predefined user data types).

We'll now add an external image field to the authors table, an email and a mandatory country field (with default 'USA'),
putting them in the logical positions within the table:

The Authors list immediately reflects the change in its column popup menu:

Declarativa WAM – The Manual 60

 Copyright Declarativa 2001-2009

Clicking the "New" button opens up an improved Author row:

Declarativa WAM – The Manual 61

 Copyright Declarativa 2001-2009

We left the new columns (photo, email, country) with database name captions, to demonstrate how a minimal
change to the application (database) reflects into extra functionality; defining better captions implies adding 3 records to
WAM_PRESENTATION. Imagem Não Disponível is Portuguese for image not available; this GIF will be replaced by a
language-neutral variant in a future WAM version.

The "Browse…" button picks a local file in the user's drive, uploads it to the server, and stores it in a server directory.
After filling out the above page and reopening it from the list:

The user double-clicked the reduced image to see the image in original size, and clicked the email link to invoke his
standard email application.

The authors change naturally reflects all over the application. Let's fill a couple of author emails, go back to a title
record and add the email column to the embedded list. Here's the result:

Declarativa WAM – The Manual 62

 Copyright Declarativa 2001-2009

3.4.4 Add a trigger with parameterized error message

Let’s suppose that 2 authors cannot have the same phone and first name, and that we wish to enforce this rule as a
trigger:

Declarativa WAM – The Manual 63

 Copyright Declarativa 2001-2009

WAM procedure SetError raises a SQL server error, referring a message in WAM_PRESENTATION; SetMacro passes
a value that will be put in the named message placeholder. The error message can be defined (for English) with:

INSERT INTO WAM_PRESENTATION
('en','ERROR','dbo','DUPLICATED_AUTHOR',
 'There is already an author with same phone and fi rst name (#Author @A)', 0, '')

Here's an user attempt to insert an author violating the trigger:

3.5 ASP scripting

No matter how good a GUI generator may be, real applications tend to demand customized code… In general, coding
customizations collides with declarative model-driven (code-less) development. WAM allows pure model-driven
development through its GUI generator as seen above, but it also provides model-supported customization, by exposing
its GUI generator API to the programmer.

3.5.1 Improve the entry page

The original entry page was produced by /WAMLibrary/Interface/default.asp, which provides a “default” entry page for
any application. We'll now build another default.asp page, showing list buttons grouped by functional area, and with a
couple of specific finders:

Declarativa WAM – The Manual 64

 Copyright Declarativa 2001-2009

Note: another approach would be to add records to WAM_TABLE_GROUP (see section) and stick to WAM’s
default.asp

The WAMListSet object fetches enough information to produce buttons for all application lists. It's draw method has a
variant accepting an array of list names, to make it easy constructing groups of related navigation buttons.

The WAMFinder object (which was indirectly invoked by WAMFinders in the original entry page) builds a simple
navigation and search entry point for a table or view, optionally with a direct link to its list search filter page, and is
provided with an array of columns to be searched in sequence – unless they are of different types, in which case the
sequence is prunned at runtime depending on the type of the value (string, number) the user enters.

Here's the new entry page:

(The GUI finder labels and tips were specified by 2 additional records in WAM_PRESENTATION; an upcoming WAM
version will build those automatically from existing row column information)

After the user hits enter on the titles finder field:

Declarativa WAM – The Manual 65

 Copyright Declarativa 2001-2009

Since no book has title "business" that search fails, and the next search (on type) took place, invoking the titles list
with a specific search filter. If the finder field had instead a value determining a single record it would open its row page
instead.

3.5.2 Customize a row page

Now we'll customize the row for titles, changing the layout so that the detail buttons appear at the top of the page, the
authors embedded list is closer to the book title, both the title and (looked-up) publisher country fields are smaller, and
the published date appears after an HTML separator:

Declarativa WAM – The Manual 66

 Copyright Declarativa 2001-2009

For this we had to create the following Active Server Page in the rows directory (so far all lists and rows were displayed
by WAM's standard.asp), named after the table/view it serves. Notice how the WAMStandardGUI object constructor
initializes a GUI (row) generator at the beginning, and how generation is requested incrementally afterwards as we
interleave customized HTML code with model-based specification:

This ASP refers just the following database objects:

· The titles table (but not its columns), to generate a row

· The titles/publishers foreign key FK_titles_publishers and the column publishers.country , to change its
lookup field size

· The columns titles.type and titles.pub_id , to define the position where the embedded list will appear

· The column titles.pubdate , so a HTML element could be added before it

The above ASP script has no more database dependencies! Other columns can be added or deleted from database tables,
data types can change, and the row will still behave as intended, and reflect changes appropriately. For example, let's
declare the pubdate to have the data type WAMDate so we abstract the time in the GUI, and add a URL field after the
title, keeping together with the next field (WAM_PRESENTATION.keep_with_next=1). Here's the result:

Declarativa WAM – The Manual 67

 Copyright Declarativa 2001-2009

3.5.3 *** Enhancing appearance with CSS

*** [IMAGEM PARA LISTA TITLES COM COLUNA NOTES]

By default, WAM does not wrap around the text of alphanumeric data type columns in lists. As you can see the above
list is exceeding the window limits and causing some usability problems. To avoid this let’s add the following line of
code to the customized CSS application page (cf. 5.3.1): COL.cssdbotitlesnotes{width:auto;}.

Other appearance details can be enhanced, just add to your CSS page the elements you want to change (cf. 5.6.2) and
feel free to enhance the application to your needs.

3.5.4 Add a browser client script

Let's now see how browser scripts can be attached to WAM generated fields. Let's call the user's attention to the sales
field whenever its value is below the advance field, suggesting something is wrong managing this book, by putting it in
red and bold:

Declarativa WAM – The Manual 68

 Copyright Declarativa 2001-2009

When the user changes either the sales or advance field the sales aspect changes. Here's the previous ASP, with a single
JavaScript block added at the end:

Declarativa WAM – The Manual 69

 Copyright Declarativa 2001-2009

The addToOnLoad method stacks an instruction for execution after the page is loaded and WAM objects are setup. The
first applies the condition when the row page opens, the other two make sure it is applied again when either field
changes.

3.5.5 Add an external ASP

Let’s now see how a WAM generated-page can invoke other ("hand-made") ASPs. Say a book price list is needed, to be
invoked from the titles list: priceList.asp, a simple "printer-friendly" HTML table. Here are the necessary WAMmodel
additions, assuming that the priceList.asp file will be placed in the standard procedures directory:

-- rather than a SQL stored procedure we're invokin g an ASP, so procedure_schema=''
INSERT INTO WAM_PROCEDURE_CALL
VALUES('', 'priceList.asp', 'LIST', 'dbo', 'titles' ,0)
-- specify English aspect for the button
INSERT INTO WAM_PRESENTATION
VALUES('en','CALLER','priceList.asp','Price List',' Show a price list',0,'')

Here’s the new Titles list, after the user clicked the new button:

Here's the full ASP:

Declarativa WAM – The Manual 70

 Copyright Declarativa 2001-2009

ASPs should perform their function only on the selected data submitted by the list, as specified by its search filter,
hence WAM passes the current list SQL statement in the QueryString's wcselect variable. However since lists have
unknown runtime-defined joins per user, in general the ASP developer should assume that the SQL statement provides
only the primary key values for the list base table, and get the additional columns by executing additional SELECTs.

Were the Titles list rigid for an user (meaning, if the user would be unable to add/remove columns) priceList.asp might
avoid the need for the first SELECT statement, by assuming certain columns to be always present in the list SQL
statement. Rigid lists for a group of users can be realized with a trivial permissions policy regarding
WAM_LIST_COLUMN, a WAMmodel table.

3.5.6 Tour end - architecture overview

You might want to recap section 2.8 above. Bringing back WAM's interface equation:

Web interface = wam(DB Meta Information + WAMmodel) + Custom pages using wam objects + Other pages

As illustrated in the tour typical, a WAM application project will typically start from its database alone, without any
(developer written) web page, relying on the WAMLibrary's generic pages (namely default.asp and standard.asp, cf.
section 5.1) to implement full data navigation and editing.

When WAMmodel improvements aren't enough, custom rows and custom lists will probably be added (cf. section 5.2):
ASPs using WAM objects. Along the way, the database design will probably be improved too.

The next picture, a more infrastructural counterpart to the diagrams in section 2.8, depicts the main system components
involved:

Declarativa WAM – The Manual 71

 Copyright Declarativa 2001-2009

Servers

Custom
code

Application
DB

WAMmodel

WAM
“interpreter”

SQL ServerIIS (ASP engine)

Workstation

Browser
MyApplication

We'll next approach WAM from two perspectives: WAMmodel first, web layers afterwards.

Declarativa WAM – The Manual 72

 Copyright Declarativa 2001-2009

4 Database server layer: meta information and WAMmo del

WAM is based on a set of VIEWs accessing the SQL engine intrinsic meta information for the application database and
associated native objects (stored procedures etc.), plus a set of WAM tables with additional information – the
“WAMmodel”. The application may use more than one database schema.

Here's a simplified diagram (some WAMmodel tables omitted):

The 5 views on the left reflect the SQL Server intrinsic meta-information, the rest are WAM tables that must be at least
partially filled out for the particular application.

The integrity of the relationships shown is only partially enforced with triggers, due to the impossibility of having the
database engine enforce relationships to its meta (INFORMATION_SCHEMA) objects. A consistency checking
procedure, including integrated inconsistency fixing, is available through WAMAdmin, cf. section 7.5.

4.1 WAMmodel: the WAM tables

***Missing: exec dbo.WAMFillWAMDataSize

Declarativa WAM – The Manual 73

 Copyright Declarativa 2001-2009

Together with database meta information, the WAMmodel fuels WAM. The WAMmodel design pursued minimalism
and no redundancy vs. built-in database engine meta information. We fought hard to keep the WAMmodel small, but
real and reasonable requirements from customer projects determined its current composition:

WAMmodel table Why we could not avoid it

WAM_PRESENTATION Database engines do not provide a place for multi-lingual strings attached to
database objects. Without records here WAM still functions, but with much
less power.

WAM_ROW_COLUMN Although the database knows its table columns, sometimes it’s necessary to
state something as hidden, not persistent, etc. – otherwise no records need to
go in here This table is usually filled for less than 5% of the data elements in
an application.

WAM_ROW_GROUP Some applications have tables with many fields and detail tables, which
must be structured for the user

WAM_LOOKUP_COLUMN Although foreign keys determine the basic mechanics of looking up values
in related tables, it is necessary to specify what columns are relevant

WAM_LIST Need a place to store current search criterion/filter for each user, and a
couple other list attributes

WAM_LIST_COLUMN Need to (let the user indirectly) specify the SELECT behind the list

WAM_CRITERION Need to persist list search criteria/filters

WAM_PROCEDURE_CALL The database and the file system already know what are the procedures, but
we need to specify they’re actually callable from somewhere

WAM_CONSTRAINT_VIEW_USAGE Foreign keys and foreign key paths are so useful for interface generation that
we couldn’t live without simulating them among VIEWs too; and every dba
loves the flexibility and control of VIEWs

WAM_TABLE_GROUP Sometimes users get confused by too many choices, this provides (optional)
structuring of tables into groups or “application areas”

WAM_TREE Not all reflexive relations in tables are to be displayed as trees; a record here
specifies a tree.

WAM_HELP Provides higher level abstractions, with more structure to ease learning and
to audit users

WAM_PREFERENCES Project after project, application users demand distinct entry pages

WAM_FINDER Finders are too important to require recurrent trivial scripting

Each table has only juicy, no redundant information; WAM introspects other items from the database meta information
once, and caches it automatically for efficiency.

Following are detailed descriptions for the WAMmodel tables. Primary key columns are prefixed with “#”. In the
column descriptions the following meta constructs will be used: A|B denotes A or B, [C] means optional C and regular
parentheses are to be interpreted as meta language.

WAMmodel tables are editable with any SQL client, including the WAM application itself through edition links
activated by WAMAdmin (see 7).

4.1.1 WAM_PRESENTATION

This is the most important WAMmodel table, as it contains all user-visible strings and also embeds the default
navigational structure (see “Default Navigational Structure”).

Declarativa WAM – The Manual 74

 Copyright Declarativa 2001-2009

Column name Description
#language Language code (cf. for example http://www.oasis-open.org/cover/iso639a.html)
#type Type of GUI object (see below)
#schema_name Database schema, or '' – empty string – for external objects, such as CALLERs to custom

ASPs
#name Name of database object or external procedure (see below)
Caption String to be used as title for row and lookup field, list column, row, list, procedure call

button, etc
Tip ToolTip help text for the GUI object
keep_with_next Bit indicating whether this GUI object should (1) or not (0) stay in the same line as the

next one to be laid out. Default is no. Inspired in a Microsoft Word paragraph attribute,
this bit allows some "visual grouping" of consecutive objects.

Comment Slot for programmer comments

The name and type WAM_PRESENTATION columns can have the following related values:

Type Name
LIST table_name | view_name | FK_name | FK_name1,FK_schema2.FK_name2, ...

FK_schemaN.FK_nameN
LIST_COLUMN LIST_Name+schema_name.table_name.column_name[+required_join]
ROW table_name | view_name
ROW_COLUMN ROW_Name.column_name
LOOKUP_COLUMN (LIST_Name | ROW_Name)+FK_name+schema_name.table_name.column_name[+required_join]
CALLER SQL Stored Procedure name | ASP path

note: ASPs for callers must be placed in a “procedures” directory, under the root directory for the
application

CALLER_SUCCESS Message to show at the end of a Stored Procedure (SP) execution, started by a caller action, when
it finishes without errors; if this record is absent no message is shown. This message can contain
placeholders referring SP output variable names, that will be replaced with their correspondent
values

ERROR Error message name; caption will contain the error string, which can have macro placeholders (see
Error Handling)

CUSTOM Convenience for user-defined presentations outside WAM's realm, for example to decorate buttons
with nonstandard functions

GUIELEMENT_FIND WAM standard strings for finders
GUIELEMENT_LIST,
MESSAGE_LIST

WAM standard strings for lists

CONSTRAINT,
GUIELEMENT_CRIT

WAM standard strings for criteria (search filters)

GUIELEMENT_ROW,
MESSAGE_ROW

WAM standard strings for rows

MESSAGE_CALLER WAM standard strings for callers
CHECK_CONSTRAINT TableName.ColumnName+ConstraintValue

4.1.1.1 Multi-lingual support

Supporting of multiple user languages is facilitated by the architecture, which centralizes all user-visible strings in the
WAMmodel's WAM_PRESENTATION table, whose primary key includes a language column.

All GUI fragments and error messages are generated for a language, according to the preferred browser language; if this
is unavailable the WAMLibrary will search WAM_PRESENTATION for the default language (defined at application
startup).

4.1.2 WAM_ROW_COLUMN

Optional properties for a column in a row. Although the column value will always be present in the GUI's invisible
object data model, if the column is mentioned in WAM_ROW_COLUMN it may have different behavior. Omitting a
column in WAM_ROW_COLUMN assigns it default behavior.

Column name Description
#table_schema Row owner
#table_name Row name: table name or view name
#column_name Table column name

Declarativa WAM – The Manual 75

 Copyright Declarativa 2001-2009

Enabled Bit indicating whether users can (1) or can not (0) edit the column value in the GUI;
default is yes. Disabling may be useful to display computed values.

Visible Bit indicating whether the column will (1) or will not (0) be visible in the GUI; default is
yes. Making a column invisible may be useful to hide a foreign key feeding a lookup
containing (more meaningful) looked-up fields

persistent Bit indicating whether the column value will be included in the INSERT/UPDATE
statements; default is yes. Disabling persistence may be useful for columns computed by
database triggers.

4.1.3 WAM_LOOKUP_COLUMN

A row for a table or view can contain column fields belonging to other tables or views, as long as there are FK paths to
them. The same applies for standalone detail lists, which may require the display of master-related fields in other tables
or views. Those columns are the lookup columns, and each one is specified by a record in this table:

Column name Description
#table_schema Table owner or FK constraint owner
#table_name Row name or Detail List name: table_name or view_name or FK_name or FK_path
#constraint_schema FK constraint owner
#constraint_name Name of FK constraint at the beginning of the FK path
#column_name Name of the looked-up column
#required_join If the FK path to the looked-up column has just one FK (the column is in the master table),

this field is left empty; otherwise it will contain the FK path
column_order Relative position of the column among looked-up columns
Enabled Same meaning as for WAM_ROW_FIELD
Visible Same meaning as for WAM_ROW_FIELD

There are several standard navigational and data-entry mechanisms associated to lookups. For more details see the
WAMLookup object.

 }

4.1.4 WAM_LIST

This table must be populated with a record for each list and detail list for user 'dbo'. The first time another user attempts
to visualize a list its record is cloned and added to WAM_LIST; this is so each user has his/her own current search filter
applied to the list.

A list is based in a single table or view. A detail list is based in a foreign key constraint or FK path
(FK1,scheme2.FK2,…, where FK1

Column name Description
#user_id User name for this preferences
#table_schema Table owner or View owner or FK owner
#table_name Table name or View name or FK name or FK path
edit_table_schema Owner for edit table
edit_table_name Table or view whose row will be used to edit
show_criterion Bit indicating whether the criterion (search filter) display and navigation will (1) or not(0)

be included in the list; default is yes
current_criterion Name, given by the user, of the current search filter applied to the list
distinct_row_set Bit indicating if the DISTINCT option will (1) or not (0) be included in the SELECT

statement.
auto_refresh Bit indicating if the list will (1) or not (0) be refreshed automatically after column

structure, search filter or (associated row) data changes. If 0 the list will appear with a
“Show Data” button so the user can explicitly trigger the refresh.

inline_editing If true this list (for this user) will allow inline editing of base table columns, except for
foreign keys. Notice that when the user exits a list cell this persists immediately and there's
no undo mechanism, so this should be reserved for non naïve users.

allow_aggregates If true, list columns will be able to specify an aggregate function

4.1.5 WAM_LIST_COLUMN

Columns to show in a list/detail list. This table is entirely maintained by the user through the standard list controls.

Declarativa WAM – The Manual 76

 Copyright Declarativa 2001-2009

A column can belong to the list’s base table/view, or it can be an external column. The table where the column belongs
is identified by table_column_schema + table_column_name. For external columns with ambiguous retrieval paths we
must specify, in requiredJoin, the foreign key name or foreign key path to use when looking up the column.

Column name Description
#user_id User name for this preferences
#table_list_schema List owner
#table_list_name List name, cf. WAM_LIST
#table_column_schema Owner of the table containing the column
#table_column_name Name of table or view containing the column
#column_name Name of the column
#requiredJoin Usually this will be filled with an empty string. Whenever there's more than one FK

PATH between table_list_name and table_column_name or table_column_name is not
directly related to table_list_name this must be filled out with the full FK PATH to use.

column_width Column width in pixels
column_order Relative order of column in list
column_sort asc: sort data ascending

desc: sort data descending
nulll: no sort for the column

aggregate_function Can specify a single aggregate function ('AVG', 'COUNT', 'MAX', 'MIN' or 'SUM'),
whose result will appear below the column values. The value will be for all values in the
record set, not just for those shown in the current page.

4.1.6 WAM_CRITERION

Criteria (search filter) filtering data shown in lists. This table is entirely maintained by each user through the standard
list and filter controls.

Column name Description
#user_id User owning this search filter
#table_schema Table owner
#table_name List name, cf. WAM_LIST
#criterion_description Name the user has given to identify the search filter
Sql_condition Condition for the search filter, in the form of an SQL WHERE clause. Search conditions

in the WHERE clause are linked with conjunctions (AND).
huge_set IN condition for SQL WHERE clause to apply to a column when the user wants to restrict

the column value to a huge set of possible values. It is used to allow easy specification of a
list of values by pasting it from somewhere, typically a file.

4.1.7 WAM_PROCEDURE_CALL

Specify buttons to call SQL stored procedures or to invoke custom ASPs. The "caller" is the GUI entity where the
button will be placed. Its aspect will be determined by a CALLER entry in the WAM_PRESENTATION table.

Column name Description
#procedure_schema Owner for the SQL stored procedure, when caller executes one, or empty ‘’, when it

invokes an ASP
#procedure_name SQL stored procedure name or relative URL of custom ASP
#caller_type Type of caller (cf. WAM_PRESENTATION). Can be ROW or LIST.
#caller_schema Owner
#caller_name Name of caller (cf. WAM_PRESENTATION)
show_confirm Bit indicating whether a confirmation dialog should be shown before the procedure is

called
The text for confirm message that appears in dialog is defined in table
WAM_PRESENTATION, column caption for type = ‘MESSAGE_CALLER’,
schema_name = ’dbo’, name=’confirm’ and can be defined for several languages

show_warning_at Maximum number of records that a list can have without forcing a confirmation dialog too
appear when this procedure is invoked. Specifying a value for this field prevents
unexpected long waits by the user. NULL means do not show this dialog (although
show_confirm may cause a dialog to appear)

See WAMCaller object for more details.

Declarativa WAM – The Manual 77

 Copyright Declarativa 2001-2009

4.1.8 WAM_ROW_GROUP

This allows interface grouping of row elements (fields – including lookups, detail lists and callers) into tabbed panes.

Group names can have captions in WAM_PRESENTATION.

Column name Description
#TABLE_SCHEMA Table or View schema
#TABLE_NAME Table or View name
#GROUP_NAME Name of group in row
#ELEMENT_NAME Name of column, caller or detail list
ELEMENT_TYPE COLUMN, LIST or CALLER

The following row has 6 groups defined, with some elements outside groups:

An element can not belong to more than one group. Elements without group (not belonging to any) appear outside
tabbed panes. If the first column has no group, all elements without group will appear above the tabs, otherwise below.

4.1.9 WAM_TABLE_GROUP

This specifies table/view grouping in the interface. It identifies the groups for the application and enumerates all tables
that belong to each group. Group names can have captions defined in WAM_PRESENTATION.

A table may belong to multiple groups. Groups have direct impact in the interface: items in list popup menus are
organized in submenus, an item for each group is created in the menu’s first level, and each group item opens a
submenu with tables contained in correspondent group. In addition, the Interface\default.asp page (see below) will
group list buttons.

Column name Description
#TABLE_GROUP Name given by the user to identify group
#TABLE_SCHEMA Table or View schema
#TABLE_NAME Table or View name

Declarativa WAM – The Manual 78

 Copyright Declarativa 2001-2009

4.1.10 WAM_TREE
This table specifies hierarchical interfaces to binary relations. Each record represents a table that defines a tree structure
through a binary relation between tree nodes. This information is used to support hierarchical viewing and querying of
trees. Any table may represent a tree, as long as it obeys the following conditions:
- A tree node is represented by a table tuple
- Its primary key is a single string field, and contains the values to be displayed in the tree
- It has an alternate key "node_key", an integer
- It has a field referring the parent node key, "parent", an integer
- It has a field with the minimum of all node keys under the node, "left", an integer
- It has a field with the maximum of all node keys under the node, "right", an integer
- It may or not have other fields
The four integer fields are independent of the tree node values, and can be computed from a simpler <node,parent>
relation table. WAM provides a sample SQL stored procedure ("fillSubClass.sql") that creates and fills a particular tree
table for the <node,parent> relation table, and which can be adapted.

Column name Description
#TABLE_SCHEMA Schema of the tree table
#TABLE_NAME Name of the tree table
NODE_COLUMN_NAME Name of the "node_key" column
LEFT_COLUMN_NAME Name of the "left" column
RIGHT_COLUMN_NAME Name of the "right" column
PARENT_COLUMN_NAME Name of the "parent" column

Notice that there's no indication of which is the field to display in the tree nodes, because it must be the primary key of
the tree table, so WAM simply introspects it.
See WAMTree object in 5.4.9.5

4.1.11 WAM_CONSTRAINT_VIEW_USAGE

This table was created to complement the basic database engine ability to represent relationships, by allowing us to
represent relations between views or a table and a view, instead of only relations between tables. This allows the use of
"simple" VIEWS (see "Support for VIEWS") as first class citizens in what concerns rows, lists, lookups, etc.
Neverthless a FK must exist between the view base tables.

Column name Description
#WAM_CONSTRAINT_SCHEMA FK wam constraint owner
#WAM_CONSTRAINT_NAME Name given by the user to complementary relation
CONSTRAINT_SCHEMA FK constraint schema; typically same as DETAIL_TABLE_SCHEMA
CONSTRAINT_NAME Name of FK constraint that will serve from support to the new relation evolving views
DETAIL_TABLE_SCHEMA Owner of detail table or detail view
DETAIL_TABLE_NAME Name of detail table name or detail view name in the relation
MASTER_TABLE_SCHEMA Owner of master table or master view
MASTER_TABLE_NAME Name of master table name or master view name in the relation

Notice that this table is to be filled only with records for FKs involving at least one view; a FK between two tables is
simply stated to the database engine.

4.1.12 WAM_HELP

This table contains information to generate online help:

Column name Description

#language

#type

#name

title

Declarativa WAM – The Manual 79

 Copyright Declarativa 2001-2009

description

table_group

app_status Is this feature already developed?

help_status Is this feature already documented?

precedents

usage_sql

See 9.5.2 for more information.

4.1.13 WAM_PREFERENCES

Each record in this table contains the preferences of an individual user:

Column name Description

#user_id User name

interface_default XML document with entry page preferences

See 5.1.1.1 for more details.

4.1.14 WAM_FINDER

Each record in this table specifies a finder field object, typically present in the application entry page:

Column name Description

#table_schema

#table_name

#finder_columns The columns to be considered when searching (separated by commas)

See 5.4.9.3 for more details.

4.2 Treating VIEWS (almost) as tables

Although WAM treats tables and views similarly, in the current version only "simple VIEWS" are supported in what
concerns the GUI: VIEWS defined by a projection over a single table, or over a table join, in which case the first table
enumerated in its FROM clause is considered as the VIEW base table. Furthermore, the base table primary key must be
included in the VIEW columns.

Views can be created to specify subsets for a table, restricted by one or more column values. Those columns act as
filters and their possible values must be explicitly declared in the WHERE clause respecting one of the following
formats: WHERE [table_name].[column_name] = column_value1 OR [table_name].[column_name]=column_value2
… AND …; or WHERE [table_name].[column_name] IN (column_value1, column_value2,…) AND ….

If no WAM_PRESENTATION information exists for a VIEW but it exists for its base table, it is used.

In addition to the above, VIEWs can have "foreign keys" defined between them, thus extending the relational GUI
generation capabilities for tables schema to view schema as well (namely lookups, detail lists and user-customizable
joins in lists); since this is not supported by the underlying SQL engine, it requires explicit support in the WAMmodel,
see section 4.1.11.

Declarativa WAM – The Manual 80

 Copyright Declarativa 2001-2009

4.2.1 VIEW updating

Given VIEW S.V in schema S, if there are stored procedures S.wam_update_V and S.wam_delete_V, they'll be used to
persist VIEW "records"; the stored procedures are responsible for implementing any update/delete cascades explicitly.
As a matter of fact, this also applies to tables.

4.3 SQL and system permissions and how they are use d

WAM introspects the standard SQL and operating system permissions and generates the GUI accordingly. This means
that buttons, links or menu options, which are known to cause a security violation, are hidden; so are tables and fields.
The same principle is applied to those WAMmodel tables that can be updateable by the user, as when configuring a list.

So the WAM GUI effectively adapts to the underlying permissions for the current user:

Situation What WAM objects do

user belongs to wam_criterionreader role Show list filters’ combo box, allowing user to apply existing search filters

user belongs to wam_criterionwriter Add two options to the list filters’ combo box: New Filter; Edit Current;
effectively allows user to create search filters

user belongs to wam_listcolchange Show four buttons in each column heading: sort in ascending order; sort in
descending order; move column to left; move column to right;

wam_listcolwriter Show two buttons: remove column from list; add columns to list;
effectively allows the user to define joins

column without SELECT permission Do not show the column in lists, rows, search filters and list’s menu

table without SELECT permission Do not show access to table (lists, rows, search filters, detail lists’ buttons,
lists’ menu)

table without INSERT permission Do not show buttons to create new records

column without UPDATE permission The corresponding row’s field is disabled

table without UPDATE permission All row’s fields are disabled and the row’s save button is not shown

table without DELETE permission do not show both row and list delete buttons

stored procedure without EXECUTE
permission

The corresponding WAMCaller button is not shown

external ASP file without Windows
‘execute’ permission

The corresponding WAMCaller button is not shown

4.4 Predefined SQL user data types

Some SQL domains/user types are predefined by WAM so an application can specify additional functionality at both
the SQL server and the GUI levels, simply by setting the SQL type of a table column.

4.4.1 wamdate, wamtime and wammoment

wamdate and wamtime are fragments extracted from the data type ‘datetime’; wamdate denotes the calendar date part,
and wamtime the time part.

wammoment was created to allow the storage of vague dates, so when the user doesn’t know a precise date he can for
instance type just the month, year or decade.

Declarativa WAM – The Manual 81

 Copyright Declarativa 2001-2009

4.4.2 wamhierarchical1 and wamhierarchical2

wamhierarchical1 and wamhierarchical2 where created to support tables with hierarchical values coded as hierarchical
keys in a single field. They differ in the number of chars used to specify each level, so wamhierarchical1 uses one char
and wamhierarchical2 uses two chars per level. When generating the interface WAM allows navigation through the
hierarchy.

4.4.3 wamphone

A phone number. In the current implementation it is just treated as a varchar, except in the WAP interface, where a
“dial this number” link will appear if the mobile phone supports this WTA feature.

4.4.4 wamemail, wamfax and wamurl

These support format validation for emails, fax numbers or url, respectively. When generating the interface WAM will
recognize them and provide the expected navigation, from both rows and lists: email/fax message header setup and
URL page opening.

4.4.5 wamimage

Supports the use of images stored on the web, referred by absolute URLs. The user interface will displays the images
just like wamexternalimage, but without support for uploading.

4.4.6 wamexternalimage

Supports the use of images stored outside the database. When WAM detects a column using wamexternalimage data
type it generates all the necessary GUI support to allow the upload (in rows) and display (in rows and lists) of images.
The uploaded image is saved in a file named after the PK value for the record, in directory
<web_application_directory>/images/<table_name>, where <table_name> is the name for the table that has the column.

File uploading is done using Persit Software’s ASPUpload server component17.

4.4.7 wamexternalfile

Columns defined with this user defined data type have the same behavior as wamexternalimage columns. But instead of
displaying the file, WAM generates a link to download the resource. And instead of saving the file in the ‘images’
subdirectory, WAM saves it in the <web_application_directory>/files/<table_name>, subdirectory.

File uploading is done using Persit Software’s ASPUpload server component18.

4.4.8 wamcustomresource (for customized file upload and download)

 Same behavior as for wamexternalfile, except it allows the application to save the uploaded files in a different location
and, if necessary, using a different user account; and the access to the uploaded file can be done through an intermediate
ASP, e.g. to implement secure access19.

Requires a Javascript handler functions to be declared the global.asa (5.5) file, through the following function call:
WAM.setCustomResource(fileSpecs, details)

fileSpecs is a path to the file that containing the functions to be used when WAM manages the file. details is an
object providing access to those functions, through its following properties:

· fileServerBaseLocation – the name of the function that returns the location to where the files will be saved.
It can be in a different server;

17 Evaluation copy available at http://www.aspupload.com/download.html
18 Evaluation copy available at http://www.aspupload.com/download.html
19 As in an application providing row-level (data dependent) access permissions

Declarativa WAM – The Manual 82

 Copyright Declarativa 2001-2009

· extraPath – the name of the function that returns an extra directory path;
· resourceName – the name of the function that returns the name of the new file uploaded;

· logonUser – the name of the function that must return an object with domain, user and password values. It will
be used by the ASPUpload component to change the user that will save the file. Return the null value if you
want to use the current user credentials;

· url – the name of the function that returns an absolute URL to the ASP page that will allow the user to
download the file (this page must be implemented by the application developer);

All the functions will receive two arguments, first is a WAMRowColumn object that represents the wamcustomresource
column, and the second argument is the WAMAPI.AppConn object20 with the current user connection.

 see WAM.setCustomResource in 5.5.

4.4.9 wamcolor (for color pickers)

*** This supports format validation for html colors and enhances the input field with a color control. Colors are stored
as hexadecimal RGB strings.

4.4.10 wamrange

User data type based on ‘varchar’ data type which values must be on the form “N of MaxN”, where N and MaxN must
be positive integers. The value is shown in lists as a horizontal bar with two segments (N and MaxN-N) and a toolTip
“N of MaxN”. wamrange has no special impact in WAMRow, it is handled as a normal ‘varchar’, without validation for
the format “N of MaxN”.

4.4.11 wamglatlng (for Google Maps)

*** This supports format validation for Google Maps latitude/longitude coordinates (decimal format). It also enhances
the input field with a control that opens a WAM customized Google Maps page. This page shows the current
coordinate and allows you to pickup a new one. The lists that has columns of this user defined data type are also
enhanced, WAM adds a link in the column value to the WAM customized Google Maps page and adds a button to open
the same WAM customized Google Maps page with markers to all coordinates in the current list.

For GoogleMaps to display you need to get a key from Google at http://www.google.com/apis/maps , and declare it to
WAM in the global.asa file (see 5.5).

4.4.12 wamclass (for entity subclassing support)

See section 4.6

4.5 *** Support for free text search21

Esta será a função que irá complementar a view documento nas pesquisas full-text:

CREATE function [t].[wam_freetext_TABLENAME](

 @freetext_string varchar(256)

) returns table

return (select v.id from t.documento as v inner join t._documento as d on d.id = v.id where freetext(d.textoIntegral,

@freetext_string))

GO

20 Of class DBConnect
21 Requires the installation of word breakers in SQL Server, cf. http://support.microsoft.com/kb/908441/en-us

Declarativa WAM – The Manual 83

 Copyright Declarativa 2001-2009

View support, for views using nondeterministic functions (such as when it depends on the current user…): Finders and
list filters look for functions "wam_freetext_«viewname»" and "wam_contains_«viewname»", resp., ….

***Se a view estiver indexada, as funções não são necessárias porque a pesquisa será aplicada directamente na view.

4.6 Support for object-oriented modeling

Relational databases can represent some object structures, even without having specific object oriented support in the
engine - conceptual objects must still persist in real world databases! WAM includes support for a simple class/subclass
(inheritance) representation schema, where an object instance persists into (1-1) related table tuples; each table will
contain a special meta information field storing the (most specific) "class" of the instance.

Suppose that Entity, Organization and Individual are SQL tables. WAM will assume that Organization is a subtype of
Entity if:

· Both Entity and Organization have primary keys with the same name, and data type.

· Both Entity and Organization have some field T with SQL (user) data type 'wamclass'; this field will not
appear to the user

· Organization's primary key is also a foreign key to Entity

Suppose similar properties hold for table Individual too. This being the case, the WAM generated GUI will have the
following differences (vs. inheritance not present):

· The rows for Individual and Organization will include all ("inherited") fields from Entity

· When opening a row from an Entity list, the row for the most specific class of the record will be opened, e.g.
Individual or Organization (or Entity)

· When creating a row from an Entity list, a popup menu will ask the user whether he desires to create an
Individual, an Organization or an Entity

· When saving a row for an Organization or Individual, both that table record and a related record in Entity will
be saved; each field T will contain the “class” of the tuple (e.g. ‘Organization’ or ‘Individual’, resp.)

This mechanism applies to multi-level class-subclass chains; the hierarchy must be a tree though (no multiple
inheritance). Along an inheritance path (e.g. Individual, Entity, Thing, …) tables can NOT have fields with identical
names (besides the primary key and the 'wamclass' field): column names must be unique in the path.

Notice that defining subclasses assumes that these are disjoint; in the example above, an Organization cannot be
simultaneously an Individual.

Note: in the current implementation it is necessary to call the stored procedure dbo.WAMInheritance after each
database structure change relevant to the above, which will build a WAM table with inheritance information.

4.7 Initial WAMmodels to start development

For starting up application development either of two WAMmodels is provided, by the WAM Installer or the SQL
scripts referred in “Manual installation”.

4.7.1 Empty WAMmodel

An empty WAMmodel has no information specific to the database it is stored in; all its tables will have no records
except for WAM_PRESENTATION, which will have only generic WAM captions and error messages.

4.7.2 Default WAMmodel

A Default WAMmodel for a database is an empty WAMmodel plus records that specify the following “default user
interface”:

Declarativa WAM – The Manual 84

 Copyright Declarativa 2001-2009

· One list and row for each table and view

· All lists have one or two pre-configured columns, selected using a WAM heuristic based on database meta
information

· A lookup (in the detail row) and a stand-alone detail list (in the master row) for each foreign key

· An entry page allowing navigation to all lists, incluing a few WAMFinders providing navigation to primary
key values, has determined by an heuristic based on the foreign key graph

The WAM installer optionally generates a default WAMmodel for the application database.

4.8 Better delete/update cascading for SQL Server

WAM includes Transact-SQL stored procedures and (additional) WAMmodel tables that augment SQL Server with the
ability to better deal with cascading updates and deletes. Although SQL Server 2000/2005 already support cascading, it
does so following a different (to our view worse) strategy: for example, cascading deletes are executed by first deleting
master tables and then detail tables, leaving these temporarily inconsistent and breaking its trigger logic – for example,
if a detail table trigger maintains a field in the master table. The WAM cascading logic deletes detail tables first, and
adds the “NULIFY” (set null) action.

The current implementation adopts a dynamic strategy, where model information is introspected at runtime to process
the cascading logic.

In order to coexist with SQL Server’s foreign key constraints these must be relaxed during cascading updates, which
requires ALTER TABLE permissions on the current user, potentially causing a security problem.

4.8.1 The two additional WAMmodel tables

4.8.1.1 WAM_DELETE_RULES

This table must be filled for those FK-PK relations whose delete rule is not supported by SQL Server: cascade.

Column Name Datatype Description
#CONSTRAINT_CATALOG nvarchar(128) Constraint qualifier (FK)
#CONSTRAINT_SCHEMA nvarchar(128) Constraint owner (FK)
#CONSTRAINT_NAME nvarchar(128) Constraint name (FK)
#UNIQUE_CONSTRAINT_CATALOG nvarchar(128) Unique constraint qualifier (PK)
#UNIQUE_CONSTRAINT_SCHEMA nvarchar(128) Unique constraint owner (PK)
#UNIQUE_CONSTRAINT_NAME nvarchar(128) Unique constraint name (PK)
DELETE_RULE char(1) Rule to apply to details when deleting

master:
C – Cascade
D – Set Default
N – Set Null

4.8.1.2 WAM_UPDATE_RULES

This table must be filled for those FK-PK relations whose update rule is not supported by SQL Server: cascade.

Column Name Datatype Description
#CONSTRAINT_CATALOG nvarchar(128) Constraint qualifier (FK)
#CONSTRAINT_SCHEMA nvarchar(128) Constraint owner (FK)
#CONSTRAINT_NAME nvarchar(128) Constraint name (FK)
#UNIQUE_CONSTRAINT_CATALOG nvarchar(128) Unique constraint qualifier (PK)
#UNIQUE_CONSTRAINT_SCHEMA nvarchar(128) Unique constraint owner (PK)
#UNIQUE_CONSTRAINT_NAME nvarchar(128) Unique constraint name (PK)
UPDATE_RULE char(1) Rule to apply to details when updating

master:
C – Cascade
D – Set Default

Declarativa WAM – The Manual 85

 Copyright Declarativa 2001-2009

N – Set Null

4.8.2 Data manipulation procedures

WAM_Delete and WAM_Update are the stored procedures that allow you to execute delete and update actions,
respectively, applying the rules you defined in the above WAMmodel tables. For other relations WAM stored
procedures simply apply the operating rule for SQL Server.

When executed, both stored procedures verify referential integrity, returning error messages to the user when it is
violated.

You must be careful when writing the statements to execute delete or update WAM procedures and duplicate all quotes
for those field values that requires quotes, as you can see in the examples below. The string passed to the WAM
procedure that contains field values, is treated inside it to verify that all fields have their values in a correct format.

4.8.2.1 WAM_Delete

This procedure deletes the row identified in @THEpk argument from the table identified in @THEtable argument.

Parameter Data Type Description
@THEtable varchar(128) Table name where to delete the row

@THEpk varchar(8000) String with PK columns and values which identifies the row to be deleted

Using WAM_Delete
exec WAM_Delete ‘Employees’, ’EmployeeID=5’
exec WAM_Delete ‘EmployeeTerritories’, ‘EmployeeID=5,TerritoryID=’’10019’’’

4.8.2.2 WAM_Update

This stored procedure updates the column values for the row which has the PK mentioned in @OLDpk with new values
referred in @NEWfields, and (optionally) @NEWtextFieldValue_1 … @NEWtextFieldValue_10

Parameter Data Type Description
@THEtable varchar(128) Table name where the update is to be made
@OLDpk varchar(8000) Column names and values identifying the PK for the row to be updated
@NEWpk varchar(8000) Column names and values for the new PK – the same as OLDpk if PK

doesn’t change
@NEWfields varchar(8000) All column names and values, including those for the PK, for the row to be

updated.
Remarks: columns with text data type must be supplied separately using the
parameters below.

@NEWtextFieldName_1 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_1 Text Value for the column with text data type – optional
@NEWtextFieldName_2 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_2 Text Value for the column with text data type – optional
@NEWtextFieldName_3 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_3 Text Value for the column with text data type – optional
@NEWtextFieldName_4 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_4 Text Value for the column with text data type – optional
@NEWtextFieldName_5 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_5 Text Value for the column with text data type – optional
@NEWtextFieldName_6 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_6 Text Value for the column with text data type – optional
@NEWtextFieldName_7 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_7 Text Value for the column with text data type – optional
@NEWtextFieldName_8 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_8 Text Value for the column with text data type – optional
@NEWtextFieldName_9 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_9 Text Value for the column with text data type – optional
@NEWtextFieldName_10 varchar(128) Name for the column with text data type – optional
@NEWtextFieldValue_10 Text Value for the column with text data type – optional

Declarativa WAM – The Manual 86

 Copyright Declarativa 2001-2009

Using WAM_Update
exec WAM_Update ‘Category’, ‘CategoryID=4’, ‘CategoryID=4’, ‘CategoryID=4,CategoryName=’’ Dairy
Products’’,Description=’’ Cheeses and milk’’’

4.9 About SQL engine built-in meta information

4.9.1 SQL-92's INFORMATION_SCHEMA

WAM assumes the database schema to be designed and maintained with some external tool, such as Microsoft's
Enterprise Manager or any other. At runtime the data model is gleaned from the standard INFORMATION_SCHEMA
(http://msdn.microsoft.com/library/psdk/sql/ia-iz_10.htm). In particular WAM uses the information about tables, views,
columns, domains, primary keys, foreign keys, users and their privileges.

Some domains (custom user types) are used to implement abstract data types known to WAM objects on the GUI side,
such as weight, vague dates, hierarchical codes, URL, email, etc

4.9.2 Additional VIEWs and tables

In order to complement the INFORMATION_SCHEMA some additional VIEWS are defined, accessing SQL Server
system tables and WAMmodel tables to get the following information:

4.9.2.1 WAM_DETAIL_LISTS

NOTE: on the latest WAM version this view is implemented as a cache (maintained by WAMmodel triggers) in a table
for efficiency.

This view exposes the relationship between rows and their correspondent detail lists. Detail lists related to a row are
determined by detecting FKs for the table in which the row is based, and, for each FK, finding lists in the WAM_LIST
table that uses that FK as a start point in their FK paths. Details lists will be either standalone or embedded, as they have
or not the caption field filled in WAM_PRESENTATION.

Column name Description
Listtype “embList” for embbeded, “saDList” for standalone
Row_name Row’s name
Language Language for detail list in WAM_PRESENTATION
Type “list”, type in WAM_PRESENTATION for detail list
Name Detail list’s name
Caption Empty ‘’ when listtype=embList, label to use when drawing button in row when listtype=

saDList
Tip Tip for the button when listtype= saDList
Keep_with_next See WAM_PRESENTATION table
Comments See WAM_PRESENTATION table
Edit_table_schema Owner for edit table
Edite_table_name Table or view whose row will be used to edit items in the detail table

4.9.2.2 WAM_REFERENTIAL_CONSTRAINTS

This is a complementary view to the REFERENTIAL_CONSTRAINTS view of INFORMATION SCHEMA. It gives
us more detailed information about how two tables are linked by means of a FK, indicating which FK field, from the
detail table, links to which PK (primary key) field in the master table.

Declarativa WAM – The Manual 87

 Copyright Declarativa 2001-2009

Column name Description
constraint_schema FK constraint owner
constraint_name FK constraint name
constraint_table_name Detail table name
constraint_column_name FK column’s name in detail table
unique_constraint_schema Master table owner
unique_constraint_table_name Master table name
unique_constraint_column_name PK column’s name in master table
ordinal_position Column identification number

4.9.2.3 WAM_STORED_PROCEDURES

Reflects information about SQL Stored Procedures and their parameters.

Column name Description
sp_schema Stored procedure owner
sp_name Stored procedure name
Parameter Stored procedure parameter name
Domain User-defined data type
data_type System-supplied data type
Isoutput Bit indicating if the parameter is an output parameter (1) or not (0)

4.9.2.4 WAM_AUDIT_LOG

This table contains an abstraction of the HTTP log, and describes the user’s actions related to GUI objects. It’s created
and maintained by a task that copies IIS logs to WAM_INET_LOG, and then extracts the juice of WAM_INET_LOG
to WAM_AUDIT_LOG. 22

Column name Description

#id Unique automatic identification

access_date Date and time of user operation

user_name User’s account

object_type Type of GUI object

object_name Name of GUI object

user_action Type of action produced

context_url Relative path of URL

context_value Query string of context_url

time_taken The duration of time, in milliseconds, that the action consumed. (same
as IIS log)

server_id The identification of the server on which the log entry was generated.

This table allows extensive logging of user actions (including data access through the application human interface) as
well as application tuning: the time_taken field reveals SQL optimization opportunities.

4.10 WAMmodel SQL utilities

The following SQLstored procedures provide some bulk operations on the WAMmodel.

22 WAM_INET_LOG_ERROR is in development to maintain the errors occurred in this process

Declarativa WAM – The Manual 88

 Copyright Declarativa 2001-2009

4.10.1 Copying list preferences between users

WAMSetDefaultPreferences (destinationuser,listschem a,listname,usermodel,delfilters)

Deletes or creates (default) values for a specific destinationuser. This procedure acts in 3 tables,WAM_CRITERION,
WAM_LIST and WAM_LIST_COLUMN. If the list_name parameter is null it sets all values to default otherwise if
list_name is given it only changes the values related to that list_name. The delfilters parameter allows to control if is the
user values in WAM_CRITERION (his search filters) are to be deleted.

WAMCopyCriterion (user_id,table_schema,table_name,c riterion_description)

Given a user_id, table_schema,table_name and criterion_description, this procedures copies all search filters that match
table_schema,table_name and criterion_description of user_id to all others users in WAM_LIST, for the same
table_name and table_schema.

WAMApplySharedCriterion(user_from,user_to,table_sch ema,table_name,criterion_description)

Copy a search filter from a user to another of a specific table by creating new records in the WAM_CRITERION table
and updating the current_criterion field in WAM_LIST table for the “receiving user” user_to.

4.10.2 Copying WAMmodel definitions for a table to a view

WAMviewObjects (table_schema, table_name, view_sche ma, view_name,
 master_constraints, detail_constraints, wam_row_ columns, wam_lookup_columns, wam_lists)

VIEWs automatically share its underlying table WAM_PRESENTATION records for columns. But they do not share
lookup defininitions, detail lists, etc. This procedure copies WAMmodel records for a (table) row to a (view) row; it
will copy (or not) each of the data referred by the boolean arguments (last 5 above).

4.10.3 Editing foreign keys in a WAMmodel

WAMreplaceFkconstraints(oldSchema,oldName,newSchema ,newName)

When you need to change a foreign key constraint (fk) name in the database and if the WAMmodel already refers it, it
will become inconsistent. This situation can be overcome by using WAMAdmin’s inconsistency detector (section 7.5);
but it can also be prevented by using the above procedure, which changes de fk name in the WAMmodel.

Declarativa WAM – The Manual 89

 Copyright Declarativa 2001-2009

5 Web server and browser layers: the WAMLibrary obj ects

Given database meta information plus WAMmodel at runtime, it is possible to derive from it all or substantial
fragments of the GUI, using either URLs or Javascript (server) objects defined in the WAMLibrary, the WAM Classic
ASP generic runtime. Those objects are in fact a higher level layer over Microsoft ADO objects: since they know about
the application meta-model, and since they support many of the GUI fragments a user expects, it is possible to write or
customize large parts of the application GUI with little effort.

In the following sections some examples will refer the Northwind database23.

5.1 Dispensing with ASP programming: the standard p ages

In order to prototype (or even develop) an application without any ASP scripting two WAMmodel-driven pages are
available, which act as runtime “GUI interpreters” for the model, implementing “The default interface navigational
structure”. See the “WAM development tour” for examples.

5.1.1 A standard entry page: default.asp

This page provides a button to navigate for each of all (non-detail) lists, and finders for the “most interesting”24 tables. It
can be accessed at <application_root>/WAMLibrary/Interface/default.asp

In order to customize this page (meaning, to replace it by a custom page) see 5.4.10. However there's also support for
user personalization, allowing each user to have a different set of finders and list buttons, see 5.1.1.1.

(See Interface\default.asp)

5.1.1.1 Customizing the entry page

The entry page can be customized to be unique for each user. Customization mode is available by clicking on
“Personalize”, and allows to:

· Show, hide or move groups in the entry page.

· Show or hide filters in the entry page.

· Show or hide lists in the entry page.

If a user doesn’t have a customized page, the user receives the dbo’s preferences, and starts customizing using those
preferences.

After finish, the user should click in “Finish personalization”, and is able to continue any time later.

The current personalization for an user is kept in a record in WAM_PREFERENCES.

5.1.1.1.1 Customizing groups

The user can customize groups using the buttons: .

The button allow the user to add a group in a specific position. Clicking in the button, we will get a menu
containing the groups that are hidden and that can be added to the entry page.

The button and , allow the user to change the group position order.

23 http://www.microsoft.com/downloads/details.aspx?familyid=06616212-0356-46a0-8da2-
eebc53a68034&displaylang=en
24 Using the heuristics in Finder Groups, see 5.4.9.4

Declarativa WAM – The Manual 90

 Copyright Declarativa 2001-2009

Finally, the button , allow the user to remove a group.

A group is not actually deleted from the user preferences, but just hidden. This feature allows a user to restore a deleted
group, keeping the previous lists and filters preferences.

5.1.1.1.2 Customizing lists

The “Add list” link, on the left top of each group, allows making visible a list. The link produces a menu containing the
lists bellowing to the current group, that are hidden and that can be added.

The buttons over the lists, allows removing the respective list.

5.1.1.1.3 Customizing finders

Customizing finders is very similar to customize lists. The “Add finder”, on right top of each group, allows making

visible a finder, and the buttons over the finder, allows removing the respective finder.

5.1.2 All other pages: standard.asp

This implements a page with a row (possibly with embedded lists and/or buttons to standalone detail lists), a list or a
detail list. Query string variables are passed to request either of the three page types:
type Winame further variables
list list name
sadlist detail list name foreign key value to relate to a master record, as key_column=value ennumeration
row row name primary key value (key), default value (wrdf_fieldName), groupname (wig)

Notice that the current list search filter is not passed in the query string, nor is it POSTed: it’s persistent in the
WAM_LIST table for the current user.

When displaying a row, standard.asp will disable a detail list button if the list is empty and the user has no SQL
permission to INSERT.

The standard.asp functionality is available for scripting via the WAMStandardGUI object.

In order to customize this page (meaning, to replace it by a custom page for a particular list or row) see 5.4.2

(See Interface\standard.asp)

5.2 The default interface navigational structure

Assuming that we are not using ASP scripting, and that the default WAMmodel for the database was generated, we’ll
have five types of nodes in the navigation graph: start page, list, row, stand-alone list and external page nodes.
Additionally, we also have the following types of (directed) navigational edges: DISPLAY_LIST, EDIT, ZOOM,
EDIT_RELATED, BACK, DISPLAY_DETAIL, and CALL. Embedded lists are considered part of its embedding row,
and search filter pages are considered part of their list owners.

The graph can be thus defined as follows, for now ignoring SQL permissions for simplicity:

· The start node is in the graph

· For each table or view, there is a list node, with a DISPLAY_LIST edge connected to it from the start node

· For each list node, there is an EDIT edge to a row node for the same table/row (sometimes referred as “drilldown”
navigation), and an inverse BACK edge

· For each of the “most interesting tables” (therefore with finders in the start page) there’s a link from the start node
to the finder table list and another to the row, and a BACK edge from the row to the start node

· If a row node has an embedded (detail) list whose edit_table is T, there’s an EDIT edge to the row node for T, and
in inverse BACK edge

Declarativa WAM – The Manual 91

 Copyright Declarativa 2001-2009

· For each lookup in a row, based on a FK to a table/view M, there will be a ZOOM edge to the list node for M (and
an inverse BACK edge) and an EDIT_RELATED edge to the row node for M (and an inverse BACK edge)

· For each (standalone) detail list of a row, there is a DISPLAY_DETAIL edge from the row node to the stand-alone
list node

· For each WAMCaller present in a row/list page, there’s a CALL edge to an external page node, representing an
external ASP instance

The graph is “built” as needed while using the application, as follows:

· The user starts in a node, typically the start page, and follows a link

· Entering a node through other than a BACK link originate a new separate browser window

· Leaving a node through a BACK link destroys the node window

· Destroying a node window transitively destroys all dependent nodes (those that were created as a direct or indirect
consequence of following links from the node)

The previous graph for the 'pubs' database example can be represented like this (as shown by aiSee, a graph displaying
application [AbsInt 2001] based on WAMAdmin output, cf. section 7.6):

Declarativa WAM – The Manual 92

 Copyright Declarativa 2001-2009

The top round node represents the entry page. Dark gray rectangles are lists, light gray ones are standalone detail lists,
and orange rectangles are rows.

Notice that this structure does not necessarily materialize in its entirely, it is generated lazily by the application as the
user navigates between pages; also, the structure will grow over a user session because invoking the same page
repeatedly creates new page instances, following the web interaction style. And the actual application navigation graph
may of course later include other pages and links due to ASP scripting.

The navigational graph is actually filtered by the current user permissions; the above definition should read instead
“for each X for which the current user has SELECT permission...".

Finally, the graph drawing produced with WAMAdmin does not include BACK or CALL links for clarity, nor does it
take permissions into account.

5.3 About custom pages and WAM directories

5.3.1 File directory structure for a WAM application

At the application root level we must have a global.asa file. The global.asa defines the connections strings used to
connect to the database, as well as other application variables (cf. 5.4.10). Typically there will also be a default.asp
page, as the main entry to the application; it may contain custom HTML, or simply a redirect to the WAM default entry
page (see 5.1.1).

Lists and rows that are entirely specified by the WAMmodel dispense with specific ASPs, they’ll simply be accessed
through WAM’s standard.asp (see 5.1.1.1). But customized lists and rows require ASPs, that should be located
respectively in the lists and rows application root subdirectories, and whose filenames must match the WAMmodel list
and row names (e.g. table or view name, FK path). They entail no navigation graph change per se (unless it’s coded in
the ASP): the WAMLibrary will find at runtime that the row/list ASP exists and will use it rather than the generic
standard.asp

If the application’s database has wamexternalimage or wamexternalfile user defined data type columns (cf. 4.4), WAM
saves the uploaded files in subdirectories, images/table_name and files/table_name, respectively. Where table_name is
the name of the table where the column belongs.

Security notice: The images and files directories must not have (ASP) execute permissions.

The default appearance of the WAM generated pages can be changed, in some aspects, using style sheets, which must
be placed in subdirectory css (see 5.6.2).

All the subdirectories described above must be created in the application root directory.

5.3.2 WAM internals: WAMLibrary directory structure

5.3.2.1 Files in root directory

_MFAQM - contains the sql queries used by WAM, distinct files for each database server.

_SMQM - contains the sql queries used by WAM,distinct files for each database server.

DBConnect - provides all methods for database interactions such as establishing connections, transaction and query
execution...

DBDatatypes - defines the datatypes to be used by WAM. This file is essential because each database server has its
own data types.

JScriptFuncs - mostly data conversion functions.

WAMAppGlobal.asa - sets WAM's global variables. e.g. version,connection string,default database schema...

WAMCache - by storing information which is likely to be reaccessed in (web server) memory, this speeds up the app.

Declarativa WAM – The Manual 93

 Copyright Declarativa 2001-2009

WAMField - stores data related to a WAM object's graphical representation (such as its label, tip,....) and methods to its
easy retrieval (HTML-formatted, datatype aware,...).

WAMInit - WAM initialization objects.

WAMList - one of the main files, controlling all lists and related items. This file works together with
WAMList_GetWAMModel.

WAMRow - another main file, with functions and methods for row control; works together with
WAMROW_GetWAMModel.

WAMRow_DML – methods for insert,delete and update of rows.

WAMError - Error handling.

WAMEventHandler – event handling

WAMLB - balances the server load by checking the server network configuration and distributing jobs between
servers.

WAMList_EditRow - ?????? when user is viewing a wam list and asks for the edition of a specfic row, it checks
the existence of such row and then allows to edit it (if exists).

WAMList_SaveColumn – updates a wamcolumn's value in the database.

WAMList_ZoomRow – allow to see the row of a list's column master table.

WAMMenu - ??

WAMMisc - contains miscellaneous functions used by wam (wampermission, dbobject,....)

WAMObjects - set of “include” statements for the WAMLibrary's most commonly used files.

WAMQueryMap - loads and maps all the required sql queries from _SMQM and _MFAQM files so that they can be
easily retrieved providing only a name.

5.3.2.2 WAMLibrary subdirectories

Admin -

 api - WAM api

 code -

 dbdependencies - check WAM dependencies from CUSTOM rows,lists.

 dbinfo - gives information of the database, such as row,tables,procedures

 default - default interface for admin use.

 dependecies - function that allows WAM to check dependencies.

 documenter - displays in a form of a HTML document, an enumeration of the lists and
rows created for each table or view used by the application.

 garbagecollector - file that checks for unmatched (referenced tables) wamexternalimage and
wamextarnalfile data types and provides the tools for removing them.

 graph - creates a graphical representation of the database and WAMmodel by
providing a gdl file to current user.

 statistics - shows the database statistics, base table number, views,etc.

 WAMmodelConsistency – contains functions to check the consistency of the database.

 WAMmodelEditmode – turns edition mode on and off

 Cache/default – turns wam cache on and off.

Declarativa WAM – The Manual 94

 Copyright Declarativa 2001-2009

 ExportImport/default – interface for export,import tools.

 [ExportImport]/FileGenerator – functions to create the export file.

 ExportImport/export.prolog - database export tools and functions. The export file follows a
prolog syntax.

 ExportImport/import.prolog - database import tools and functions. The import is made from a
prolog file.

 Setup - in this folder we have all files needed to install WAMmodel.

Criterion -

 WAMCriterion – functions to manage search criteria defined to or by user.

 criterion - creates criterion and execute it.

 Huge set - methods for creating and controlling huge sets defined by user

Dialog -

 WAMDialog - displays a dialog box.

Finder -

 finder – creates a finder object and executes it.

 WAMFinder –?? defines finders objects for WAM search functionalities. This works in
tables (views??) and search fields are through primary keys columns.

GoogleMaps

 default -

 WAMGoogleMaps -

Group

 WAMListGroup - functions to manage list that belong to a group

 WAMTableGroup - contains methods to organize the application tables,views when groups
exists or are created.

[Images]

 ShowImage – displays an image in the browser

[Interface]

 Login – displays a form so that the user can log in

 Help – displays context-aware help

 WAMStandardGUI – WAMRow and WAMList standard graphical user interface generator

 Standard – handles the html requests and instantiates a new instance of

WAMStandardGUI with the parameters received (witype and winame)

 Default.js – contains the methods which open a requested row or list in a new
window, wether by calling standard.asp with the requested values or by opening a custom made WAMList/WAMRow.

 Default – responsible for displaying the WAM’s initial page

[Interface].[Help] – contains files that are responsible for the WAM Help

[LiveLookup]

 livelookup – creates and executes an lookup object.

Declarativa WAM – The Manual 95

 Copyright Declarativa 2001-2009

 LiveLookup – contains all functions for wam lookup columns like add a lookup field,
removing,changing lookup column value...

 ZoomRowexist – contains the tool functions to that allow to select from a column master table.

[WAP]

 This folder contains WAM for WAP support.

5.4 Programming ASPs with WAM objects

We’ll now review the ASP objects supporting WAM’s own standard.asp and default.asp generic pages, and which
can be used in customized ASPs.

You’ll notice frequent messages ‘draw’ being sent to WAM objects; draw essencially means “generate HTML and send
it to the browser”.

5.4.1 Including the WAMLibrary

WAM objects are defined in a few JavaScript files that need to be included, usually at the beginning and end of the ASP
file:

<!-- #INCLUDE VIRTUAL="/MyApp/WAMLibrary/WAMObjects .asp" -->
…your code here…
<!-- #INCLUDE VIRTUAL="/MyApp/WAMLibrary/WAMEnd.asp " -->

5.4.2 Using the WAMStandardGUI object

WAMStandardGUI is used to generate standard GUI elements for a Row, a List or a Details List, allowing the user to
access WAMRow, WAMList or WAMStandaloneDetailList objects respectively. It’s the top level object to use for
most customized pages.

When used to generate a row, WAMStandardGUI gives access not only to the WAMRow object, but also to the
embedded detail list, if exists, and a collection of buttons to invoke standalone detail lists related to that row.

5.4.2.1 Implementing a page for a row, without cust omization
var std = new WAMStandardGUI("ROW", "my_row", false);
std.draw(); // draw it as if no custom code existed

5.4.2.2 A row with some customization
var std = new WAMStandardGUI("ROW", "my_row", false);
std.wamRow.drawFormBegin();
std.drawDListButtons(5); // place buttons at top, 5 per line rather than 4 (default)
std.wamRow.draw(false); // draw the bulk of the row after the buttons…
std.drawEmbeddedLists(); // embedded list…
std.wamRow.drawFormEnd();

5.4.2.3 A row with embedded list in the middle

WAM row pages draw fields first, and its embedded list (if any) at the end. How can we obtain the following Orders
row in the Northwind application, with embedded list after the ShippedDate field?

Declarativa WAM – The Manual 96

 Copyright Declarativa 2001-2009

The following does it:
<%
var rowOrders = new WAMStandardGUI("ROW", "Orders", false);
rowOrders.wamRow.drawFormBegin();
%>
<table cellpadding='0' cellspacing='0'>
<% rowOrders.wamRow.drawFromTo(null, "ShippedDate"); %>
<tr><td colspan='2'><% rowOrders.drawEmbeddedLists (); %></td></tr>
<% rowOrders.wamRow.drawFromTo("ShippedDate", null , true); %>
</table>
<% rowOrders.wamRow.drawFormEnd(); %>

5.4.2.4 A page for a standalone list, without custo mization
var std = new WAMStandardGUI("LIST", "my_list", fal se);
std.draw(); // draw it as if no custom code existed

5.4.2.5 A page for a standalone list, with some cus tomization
var std = new WAMStandardGUI("LIST", "my_list", fal se);
std.wamList.drawFormBegin();
std.wamList.drawCallers(); // caller buttons will b e over the list, rather than below
std.wamList.draw(false, false);
std.wamList.drawFormEnd();

5.4.2.6 A page for a standalone detail list, withou t customization
var std = new WAMStandardGUI("LIST", "my_sdlist", f alse);
std.wamList.draw(); // draw it as if no custom code existed

5.4.2.7 A page for a standalone detail list, with u ser customization
var std = new WAMStandardGUI("SADLIST", “my_sdlist" , false);
std.wamList.setTableWidth("100%");
std.wamList.drawFormBegin();
std.wamList.drawCallers(); // caller buttons will b e over the list, rather than below
std.wamList.draw(false, false);
std.wamList.drawFormEnd();

Declarativa WAM – The Manual 97

 Copyright Declarativa 2001-2009

5.4.3 Client Javascripting

In a customized page using WAM, several Javascript objects are made available for scripting in the browser, as well as
high-level data events. So customization is not restricted to the web server layer: it is possible to run Javascript in the
browser with direct access to (browser client representations) of WAM objects25.

If you need to add JavaScript code to your custom page, that needs to be executed after the page loads (after all WAM
objects are created), use window.addToOnLoad(MyJavaScriptCall). This method creates a stack of JavaScript calls to
be executed after the page loads. You can add a reference to a function or a string code to be executed (eval).

5.4.3.1 Predefined variables in a (customized) row

WAM.row (of class WAMRow) is the main object generated by the server for the requested row.

This object has two main collections, columns and lookups . The indexes values of these main collections are the names
of the table’s columns and the table’s foreign key constraints, respectively.

The columns collection contains the javascript objects (of class WAMRowColumn), that represent the html input fields
for columns (e.g. WAM.row.columns[“column_name”]).

The lookups collection contains the javascript objects (of class WAMLookup) that represents each lookup (e.g.
WAM.row.lookups[“FK_master_detail”]).

Each lookup has a collection of lkColumns , containing javascript objects (of class WAMLookupColumn) that
represents the html input fields for each looked up column. In this collection, the index value has the following syntax:
table_column_name+required_join (e.g.
WAM.row.lookups[“FK_master_detail”].lkColumns[“column_name+dbo.FK_master_x_detail_y”]).

For each standalone (non embedded) detail list, there will be a button in the row. The buttons (html elements) generated
have the following names: “btnfk_path”, where fk_path represents the name of the list defined in the WAM_LIST table;
spaces, dots and commas are replaced by the character underscore (_) (e.g. btndbo_FK_titles_publishers).

For each caller, WAM generates a HTML button with name objCaller_procedure_schema_procedure_name. When
generating names, spaces and dots are replaced by the character underscore (_). When the caller represents an (external)
ASP page the procedure_schema is omitted.

The callers are available in rows and lists.

5.4.3.2 Predefined variables in a (customized) list

WAM.list (of class WAMList) is the main object generated by the server for the requested list.

This object has one main collection named rows . This is a JavaScript array object with primary key information for each
line in the list. Each element of the array has a property (pk) with another collection, the primary key values. (e.g.
WAM.list.rows[0].pk[n].value).

Caller buttons are available, with the same names as for rows.

5.4.3.3 WAM high-level events

At the client side, we have these events available from each (browser Javascript) WAM object:

Object Event Description
WAMRow WAMROW_ONBEFOREDELETE Fires before sending the request to the web server to delete the record.
 WAMROW_ONBEFOREINSERT Fires before sending the request to the web server to insert the record.
 WAMROW_ONBEFOREUPDATE Fires before sending the request to the web server to update the record.
WAMLookup WAMLOOKUP_ONAFTEREXECUTE Fires after successfully executing the lookup.

25 You can see some more details about these WAM objects by using the API help in WAMAdmin, see 7.2

Declarativa WAM – The Manual 98

 Copyright Declarativa 2001-2009

 WAMLOOKUP_ONAFTERCLEAR Fires after cleaning the lookup.
WAMCaller WAMCALLER_ONBEFOREEXECUTE Fires before executing the caller.
 WAMCALLER_ONAFTEREXECUTE Fires after successfully executing the caller.

In order to wire a Javascript function to these events, use the set method of the source's events object; for each WAM
object type above:

WAM.row.events.set(event_name , function_name);
WAM.row.lookups["LookupName"].events.set(event_name , function_name);
objcallername .events.set(event_name , function_name);

Lookup names as in the WAMmodel. For objcallernames see 5.4.3.1

5.4.4 WAM events for server Javascript

At the server side, only the WAMRow object has events.

Event Description
WAMROW_ONAFTERDELETE Fires after successfully deleting the record from the database. It is executed within an open

database transaction using the WAMAPI.AppConn object.
WAMROW_ONAFTEREXECUTE This is the last event to fire. It fires when the row finished execution. No open database

transaction is available.
WAMROW_ONAFTERINSERT Fires after successfully inserting the record in the database. It is executed within an open

database transaction using the WAMAPI.AppConn object.
WAMROW_ONAFTERUPDATE Fires after successfully updating the record in the database. It is executed within an open

database transaction using the WAMAPI.AppConn object.
WAMROW_ONBEFOREEXECUTE This is the first event to fire. It fires when the row start execution. No open database

transaction is available.
WAMROW_ONBEFOREDELETE Fires before deleting the record from the database. It is executed within an open database

transaction using the WAMAPI.AppConn object.
WAMROW_ONBEFOREINSERT Fires before inserting the record in the database. It is executed within an open database

transaction using the WAMAPI.AppConn object.
WAMROW_ONBEFOREUPDATE Fires before updating the record in the database. It is executed within an open database

transaction using the WAMAPI.AppConn object.

In order to wire a (server) Javascript function to one of these events, get a reference to the WAMRow object and set its
events:

var std = new WAMStandardGUI("ROW", "my_row", false);
var myRow = std.wamRow;
myRow.events.set(event_name , function_name);
std.draw();

5.4.5 Row objects

5.4.5.1 WAMRow

WAMRow is used to generate a row based in a table or view, and which has the capacity to insert, update, delete, and
visualize table or view records. The row has two main collections: columns that belong to the base table and lookups
that refer columns in other tables – each having a FK path from the base table. WAMRow interacts with two other objects,
WAMRowColumn and WAMRowLookup.

 (See WAMRow.asp for more information)

5.4.5.2 WAMRowColumn

WAMRowColumn is typically used in the row context and has all the information about a column, not only that gathered
from the database builtin meta model but also the extra information from the WAMmodel tables. This is used to
generate the GUI element for the column, according to its data type, size, etc., formatting and validating it accordingly.

(See WAMRow.asp)

Declarativa WAM – The Manual 99

 Copyright Declarativa 2001-2009

5.4.5.3 WAMRowLookup

WAMRowLookup is used with rows to both retrieve related data from other tables, given a foreign key value, or to fill
foreign key values based on a user choice over related data. Each lookup has two navigation links, one to a master table
row and the other to a list for the master table.

This object has a collection of WAMRowColumns for all looked-up columns.

(See WAMRow.asp)

5.4.5.3.1 How to make conditional lookups

Sometimes it’s useful to restrict the records in a lookup using one or more column values from the row which contains
the lookup. It can be done using either row base columns or other looked up columns.

Let’s consider the row Orders for this example, assuming that we want to apply a filter (a value from table Customers)
on the lookup to the Employees table:

 So when the user tries to find an employee by (say) typing a partial last name in the following page:

…the lookup (and the disambiguation list, if it appears) should reject employees that are not from the same country of
the customer26. In order to do this, the lookup filter will be applied to the column Country (Employees table), using the
value from row lookup column Country in Customers.

26 May sound a bit weird, but we wanted to stick to the Northwind example;-)

Declarativa WAM – The Manual 100

 Copyright Declarativa 2001-2009

For that you’ll need to customize the row for table Orders as shown bellows.
<%@ LANGUAGE=JScript %>
<!-- #INCLUDE VIRTUAL="/Northwind/WAMLibrary/WAMObj ects.asp" -->
<% var rowOrders = new WAMStandardGUI("ROW", "Order s"); %>
<SCRIPT LANGUAGE=javascript>
<!--
function setLookupFilter(){
 WAM.row.lookups.FK_Orders_Employees.addFilterColum n(
 new WAMLookupColumn('Employees', 'Country', WAMDa taType.dtnvarchar, null, null, null, null, ''),
 WAM.row.lookups.FK_Orders_Customers.lkColumns.Cou ntry
);
}
window.addToOnLoad(setLookupFilter);
//-->
</SCRIPT>
<!-- #INCLUDE VIRTUAL="/Northwind/WAMLibrary/WAMEnd .asp" -->

In the function setLookupFilter the method addFilterColumn (from the WAMLookup object) is used to specify the
filter to apply to the lookup. The first argument refers to the column that will be used to filter the lookup and the second
argument is the row column that has the value to apply to the filter column (first argument).

5.4.5.3.2 How to get dynamic default values for columns in a row using lookups

This example shows how to customize a row, having one or more lookups, to fill by default some columns using
additional looked up columns.

Let’s take the row Orders as an example.

We will show how to automatically fill the Shipping columns (ShipName, ShipAddress,…,ShipCountry) in the row
Orders, using hidden looked-up columns to the Customer table:

Two steps are needed. First, insert27 some records into the WAM table WAM_LOOKUP_COLUMN, to add the Shipping
columns to the list of looked-up columns for the lookup to Customers table:

-- Add columns Address, City, Region, Code and Coun try
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'Orders', 'dbo', 'FK_Orders_Customer s', 'Address', ' ', 2, 1, 0)
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'Orders', 'dbo', 'FK_Orders_Customer s', 'City', ' ', 3, 1, 0)
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'Orders', 'dbo', 'FK_Orders_Customer s', 'Region', ' ', 4, 1, 0)
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'Orders', 'dbo', 'FK_Orders_Customer s', 'Code', ' ', 5, 1, 0)
INSERT INTO WAM_LOOKUP_COLUMN
VALUES('dbo', 'Orders', 'dbo', 'FK_Orders_Customer s', 'Country', ' ', 6, 1, 0)

Second, customize the row Orders:

27 This can also be done using the WAM Admin interface

Declarativa WAM – The Manual 101

 Copyright Declarativa 2001-2009

<%@ LANGUAGE=JScript %>
<!-- #INCLUDE VIRTUAL="/WAMLibrary/WAMObjects.asp" -->
<% var rowOrders = new WAMStandardGUI("ROW", "Order s"); %>
<% if (rowOrders.wamRow.isNew()){ %>
<SCRIPT LANGUAGE=javascript>
<!--
function fillShipColumns(){
 var lkc = WAM.row.lookups.FK_Orders_Customers.lkCo lumns;
 var rc = WAM.row.columns;
 rc.ShipName.setValue(lkc.CompanyName.getValue());
 rc.ShipAddress.setValue(lkc.Address.getValue());
 rc.ShipCity.setValue(lkc.City.getValue());
 rc.ShipRegion.setValue(lkc.Region.getValue());
 rc.ShipPostalCode.setValue(lkc.PostalCode.getValue ());
 rc.ShipCountry.setValue(lkc.Country.getValue());
}
function setLookupHandlers(){
 WAM.row.lookups.FK_Orders_Customers.event.set(WAML OOKUP_ONAFTEREXECUTE, fillShipColumns);
}
window.addToOnLoad(setLookupHandlers);
//-->
</SCRIPT>
<% } %>
<!-- #INCLUDE VIRTUAL="/WAMLibrary/WAMEnd.asp" -->

The function setLookupHandlers defines the fillShipColumns as the function to be triggered after lookup’s execution
(lookup event ONAFTEREXECUTE).

 The function fillShipColumns initializes the values for the Shipping columns with the values retrieved by looked-up
columns.

5.4.5.4 How to execute lazy lookups

Typically in a WAM application a lookup is triggered after the user fills one of the looked up columns, but if a lookup
has more than one looked up column, it could be useful to use a lazy lookup. A lazy lookup allows the user to choose
the moment when to execute the lookup, allowing the use of more than one looked up column in the execution of the
reverse lookup.

Let’s take the row Products for this example and the lookup to the table Suppliers:

We will add the column Country to the lookup for table Suppliers, by inserting a new record into the
WAM_LOOKUP_COLUMN table (this could also be done with WAMAdmin):

INSERT INTO dbo.WAM_LOOKUP_COLUMN VALUES('dbo', 'Pr oducts', 'dbo', 'FK_Products_Suppliers',
'Country', ' ', 2, 1, 1)

Then we need to customize the row Products to implement the lazy lookup:
<%@ LANGUAGE=JScript %>
<!-- #INCLUDE VIRTUAL="/Northwind/WAMLibrary/WAMObj ects.asp" -->
<%
var products = new WAMStandardGUI("ROW", "Products" , false);

Declarativa WAM – The Manual 102

 Copyright Declarativa 2001-2009

// --- Before drawing the row define the lookup to the table Suppliers as lazy
products.wamRow.lookups.FK_Products_Suppliers.setLa zy();
products.draw();
%>
<SCRIPT LANGUAGE=javascript>
<!—
function executeLookup(){
 // --- Execute reverse lookup
 WAM.row.lookups.FK_Products_Suppliers.reverseExecu te();
}
// Create a button in the interface to execute the reverse lookup when clicked
// The button will be displayed next to the last lo oked up column
// It could be specified in HTML in some other way… the following patches WAM generated HTML:
function createButton(){
 // --- Retrieve the container of the last looked u p column’s input field
 var el = WAM.row.lookups.FK_Products_Suppliers.lkC olumns.Country.getHTMLEl().parentElement;
 var btn = window.document.createElement("INPUT");
 btn.type = "BUTTON";
 btn.value = "Supplier ...";
 btn.onclick = executeLookup; // this "wires" the e vent to execute the lazy lookup
 // --- WAMButton look and feel
 btn.className = "cssWAMstandardButton";
 el.appendChild(btn);
}
window.addToOnLoad(createButton);
//-->
</SCRIPT>
<!-- #INCLUDE VIRTUAL="/Northwind/WAMLibrary/WAMEnd .asp" -->

At this moment you are able to test your lazy lookup. Fill any or both of the looked up columns CompanyName and
Country, and press the button “Supplier…” to execute the reverse lookup.

5.4.6 Operations: WAMCaller

WAMCaller is the object that allows the user to execute a SQL stored procedure (SP) or to invoke an ASP, by clicking
the button generated inside a row or a list by WAMCaller . The object has a collection of arguments automatically
determined by the caller type where the caller button is placed, so for “row” it creates arguments for PK columns and
for “list” it creates an argument with the current SQL statement used in the list, including the current search filter. A
confirmation dialog can be requested before the execution of the SP or ASP with a bit in the WAMmodel (cf.
WAM_PROCEDURE_CALL.show_confirm).

If a value is specified for show_warning_at, in table WAM_PROCEDURE_CALL, a test is made before de procedure is
executed or the ASP is called in order to find if the number of records to be processed exceeds that value. When this
happens, an alert is shown to the user warning him to the possible long wait he probably will face if he chooses to
continue with the procedure execution.

After the execution of a SP a success message is shown, if defined in WAM_PRESENTATION (by a record with
type=CALLER_SUCCESS).

In addition to the implict context provided by its row or list, a caller can require further input from the user before
executing; this is supported for stored procedures, by using a "WAMA" table.

 (See ProcedureCaller\WAMaller.asp)

5.4.6.1 WAM caller user arguments: WAMA

In order to require further input from the user before executing a stored procedure (caller) P, it is sufficient to have in
the database a table named "WAMA_P", with the columns identical (in name and type) to the stored procedure
arguments. After the user clicks the caller button, a new "modal" page appears with a "ROW" for WAMA_P.

The WAMA_P table should have no records. It is used merely for its metadata.

Declarativa WAM – The Manual 103

 Copyright Declarativa 2001-2009

Example:

create table dbo.WAMA_teste (numero int primary key, obs varchar(32));

(include permissions for SELECT and INSERT)

The WAMA page can be improved by extending its WAMmodel (namely with captions and lookup columns, although
no detail lists - because there never will be a record in WAMA_P). Here's an example for a WAMA for a stored
procedure invoked from a ROW with a simple primary key (the first field), an additional argument (a foreign key to
another table), while providing the user with lookup fields, the one above to show some ROW context, and the second
to ease data input:

The above covers most situations; for further control (e.g. client-side Javascripting, etc.), a WAMA ROW can be
customized, as for ordinary tables.

5.4.6.2 How to control the enabled state of the WAM callers’ buttons
(enabled/disabled)

Sometimes it’s necessary to control the enabled state of the WAM callers’ buttons. We'll use the row Orders for an
example: a button which calculates the order total, but which should be enabled only if the order exists in the database
(meaning that the user is looking at it and it has already been inserted).

First, we define the stored procedure we wish to call, something to compute the order total from its detail lines:

Declarativa WAM – The Manual 104

 Copyright Declarativa 2001-2009

CREATE PROCEDURE [dbo].[OrderTotal]
 @OrderID int,
 @Total money output -- watch this name referred be low…
AS
SELECT SUM(ROUND(CONVERT(money, Quantity * (1 - Dis count) * UnitPrice), 2)) AS '@total'
FROM dbo.[Order Details]
WHERE OrderID = @OrderID

After creating the stored procedure in the SQLServer, add it to the WAM_PROCEDURE_CALL table (possibly with
WAMAdmin):

INSERT INTO dbo.WAM_PROCEDURE_CALL VALUES(‘dbo’, ‘O rderTotal’, ‘ROW’, ‘dbo’, ‘Orders’, 0, null);

The last step is the customization of the row Orders:

<%@ LANGUAGE=JScript %>
<!-- #INCLUDE VIRTUAL="/Northwind/WAMLibrary/WAMObj ects.asp" -->
<%
var rowOrders = new WAMStandardGUI("ROW", "Orders", false);
// Before drawing the row Orders check if the recor d being edited exists in the database
if (!rowOrders.wamRow.exists()){
 // --- Disable the button for the WAMCaller dbo.Or derTotal
 rowOrders.wamRow.callers["dbo.OrderTotal"].button. setEnabled(false);
}
// Now, the row can be drawn:
rowOrders.draw();
%>
<SCRIPT LANGUAGE=javascript>
<!—
// --- Displays the total of the order
function showOrderTotal(){
 // --- @Total is the output argument of the dbo.Or derTotal stored procedure
 alert(objCaller_dbo_OrderTotal.outputArgs["@Total"].getValue());
}
// --- Define caller events
function setCallerEvents(){
 // --- Defines the function to be called after the WAMCaller execution
 objCaller_dbo_OrderTotal.event.set(WAMCALLER_ONAFT EREXECUTE, showOrderTotal);
}
window.addToOnLoad(setCallerEvents);
//-->
</SCRIPT>
<!-- #INCLUDE VIRTUAL="/Northwind/WAMLibrary/WAMEnd .asp" -->

5.4.6.3 How to execute WAMCallers with more argumen ts, beyond primary key
columns

WAMCallers in a row assume that the stored procedure will take as arguments the primary key values for the current
row. Now we'll enhance the previous example (5.4.6.2) by adding a new input parameter (client discount) to calculate
the total of the order with the current client discount applied to it.

First, let's alter the stored procedure, to add a new input parameter Discount:
ALTER PROCEDURE [dbo].[OrderTotal]
 @OrderID int,
 @Discount int = 0,
 @Total money output
AS
SELECT ((100.0-@Discount)/100.0)*SUM(ROUND(CONVERT(money, Quantity * (1 - Discount) * UnitPrice),
2)) AS '@total'
FROM dbo.[Order Details]
WHERE OrderID = @OrderID

Some changes need also to be made in the customized row Orders:
· add the next javascript lines to the script block of the row Orders:

 function setCallerArguments(){
 // --- Add the new argument Discount to the WAMC aller OrderTotal’s arguments collection
 objCaller_dbo_OrderTotal.add(new WAMArgument("Di scount"));

Declarativa WAM – The Manual 105

 Copyright Declarativa 2001-2009

 }
 window.addToOnLoad(setCallerArguments);

· add the next javascript function to the script block of the row Orders
 function setCallerDiscount(){
 var discount = prompt("Please enter the customer discount:", 0);
 if (discount == null || isNaN(discount)) discount = 0;
 // --- Set the entered value to Discount argument
 objCaller_dbo_OrderTotal.arguments.Discount.setVa lue(discount);
 }

· add this line to the function setCallerEvents:
 objCaller_dbo_OrderTotal.event.set(WAMCALLER_ONAFT EREXECUTE, setCallerDiscount);

5.4.6.4 How to obtain results from a WAMCaller, and to open a window depending
on them

Add an event handler myeventHandler, and fetch a single caller result. In the following example, the ROW caller calls a
stored procedure named t.instanciaProcesso:

<%@ LANGUAGE='JScript' %>
<!-- #INCLUDE VIRTUAL="/WAMLibrary/WAMObjects.asp" -->
<% var gui = new WAMStandardGUI("ROW"); // generate the normal page %>
<script charset='iso-8859-1' type='text/javascript' language='javascript'>
<!--
function myEventHandler(){
 var objCaller = objCaller_t_instanciaProcesso;
 // a future WAM version may avoid this textual ref erence by passing the caller as argument
 if (objCaller.getReturnStatus() != _WAMCaller.STAT US.FAIL){
 var result = objCaller.outputArgs["MYRESULT"].get Value();
 // assumes SELECT … as 'MYRESULT' at the end of t he stored procedure
 window.de.add(// uses the window "button deactiv ator" object
 $("btnt_instanciaProcesso"), // shortcut for get ElementById…
 window.childWindows[// now the new window id:
 window.openChild(
 "<%= WAMAPI.Page.baseURL('WAMLibrary/Interfa ce/standard.asp', 'witype',
'row', 'winame', 't.processo', 'key', '')%>"+ resul t)
]);
 // opens new ROW, disabling the caller button unt il the new ROW window loads
 }
}
function initialize(){
 objCaller_t_instanciaProcesso.event.set(_WAMCaller .EVENTS.ONAFTEREXECUTE, myEventHandler);

}
window.addToOnLoad(initialize);
//-->
</script>
<!-- #INCLUDE VIRTUAL="/WAMLibrary/WAMEnd.asp" -->

5.4.7 Lists: WAMList

WAMList is used to generate lists for tables. Columns in a list can be either from the list’s base table or from any table
directly or indirectly related to it by a FK path. The list generated can have a record navigation bar and a search filter
definition for filtering rows. From the list’s GUI it’s also possible to delete a record or to open its correspondent row for
edition.

Note: A customized web page can contain only one WAMList object

The user can personalize the lists, with operations to add, change or remove search filters, as well as to add, remove,
change sorting or change position of list columns in list. The result is kept as user preferences in the WAMmodel
(database).

By default a list shows 15 records by page, but this can be configured for all lists in the global.asa file (see 5.5).

Declarativa WAM – The Manual 106

 Copyright Declarativa 2001-2009

By default lists do not show its total number of records. This information can be made visible for each list by setting its
WAM_LIST.recordCountVisible bit. Notice that this may degrade performance, as it implies an additional SELECT
COUNT(*) statement to be executed. Furthermore, the user must have SELECT permission for all table columns
involved, otherwise SELECT COUNT(*) fails due to a permission error.

A list can be opened without showing its data; instead, it will contain a button to show the data. This occurs only for
those lists that are defined in the WAMList table with the auto-refresh option turned off (auto_refresh column has the
value 0). The user can then execute all the operations to customize the list (column adding/removing, ordering, search
filters) without re-fetching data from the database, and when he/she is done finally see the data, according to the
customization made. The no refresh option is useful for lists with heavy demands on the database server.

There are two exceptions when the auto-refresh option is not considered: lists opened in zoom mode and lists opened in
consequence of a finder action. In both these cases lists are always opened in auto-refresh mode.

A list will usually allow the user to open a row only for the base table, by clicking the magnifying glass button; by
calling WAM.setListToMasterNavigation(true) in the Application_OnStart function in global.asa all lists will also
allow the user to open a row for any table with a visible column, by providing an hyperlink in it. For example, in a list
with customer names and invoice numbers a click in an invoice number will open one (of many) invoice of the
customer, whereas a click on any of instances of a customer will open it.

A list may display duplicated information, say if the user has hidden some columns. There is however a list toggle
button, invisible by default, which adds a DISTINCT qualifier to the list SELECT statement; for this button to be
visible, the following function should be invoked in the global.asa file, by the Application_OnStart function:
WAM.setListDistinctRowSet(true).

By accessing the list’s hierarchical popup menu the user can add or remove the columns visible in a list. The columns
presented in the menu are the columns from the list’s base table plus columns from tables/views that have a relation
with it through a foreign key constraint or a foreign key path. By default only columns from master tables/views
relations are shown in the menu, but this can be configured in order to allow also the addition of columns from detail
tables/views relations, by invoking the following function in the global.asa file, from the Application_OnStart function:
WAM.setMenuDetailNavigation (true). Notice that this may degrade performance, as users get the power to specify
queries with more records than the list base table.

A list filter can be easily shared among users if WAM.setAllowListFilterSharing(true) is called in global.asa; this will
make all lists display a link to copy the current list URL (with filter applied) so the user can give it to someone else.

If WAM_TABLE_GROUP records exist for the related tables/views, the list hierarchical popup menu will group
tables under their group names.

A list is invoked in either of 3 modes: normal, zoom (to pick a value for a row lookup) and search filter (to
disambiguate a finder search).

By default lists will display (scaled-down versions of) images in WAMimage and WAMExternalImage columns. This
can have a negative impact on performance, even on intranets, and so there's a method to declare columns with (large)
images to be ommited in all lists of the application: WAM.hideImagesInLists("owner.tableOrView.column"), to be
called by Application_OnStart in global.asa ; for example WAM.hideImagesInLists("dbo.fotoVinha.foto").

A (customized) list can adopt a different strategy for alternatively highlighting its rows. By messaging the list object
before drawing the list with

 list.setBackgroundStyle(WAMLIST_BACKGROUNDSTYLE_GROUPED);

the row background colors will change following data value changes in the leftmost ordered column. The default
strategy can be explicitly specified with list.setBackgroundStyle(
WAMLIST_BACKGROUNDSTYLE_ALTERNATED);

Finally, any list column can have an aggregate value at the bottom. There's currently no user gadget to specify this, it
must be specified in WAM_LIST and WAM_LIST_COLUMN in the WAMmodel. Hence this is personalizable per
user. As usual, the 'dbo' records function as prototypes for other users.

 (See WAMList.asp)

Declarativa WAM – The Manual 107

 Copyright Declarativa 2001-2009

5.4.7.1 How to create a customized List

A list can be easily customized to add some extra functionality.

In the next lines we will show you a simple customization of the list Customers. We will add a link to column
CompanyName to show a menu (for the example, with only one option) which will allow the user to create a new Order
for the selected Customer.

<%@ LANGUAGE=JScript %>
<!-- #INCLUDE VIRTUAL="/Northwind/WAMLibrary/WAMObj ects.asp" -->
<%
var customers = new WAMStandardGUI("LIST", "Custome rs", false);
customers.wamList.columns["Customers+dbo.Customers. CompanyName"].
 setLink("NW.setCurrentRow(this); NW.menu.open(even t);");
customers.draw();
%>
<SCRIPT LANGUAGE=javascript>
<!—
// --- Defines global object
var NW = {
 // --- Menu object
 menu:null,
 current:null,
 // --- Sets the row index of the table cell clicke d
 setCurrentRow:function(el){
 // --- The argument el returns the HTML A object
 // --- Get index of line clicked by checking the rowIndex of the HTML TR object
 this.current = el.parentElement.parentElement.ro wIndex - 1;
 },
 // --- Open a new (child) window to row Orders
 // --- It uses the primary key values as row defau lts
 createNewOrder:function(){
 // --- Close menu
 this.menu.close();
 // --- Open row Orders with a default value in t he CustomerID column
 window.openChild(
 "../rows/Orders.asp?wrdf_CustomerID=" + W AM.list.rows[this.current].pk[0].value
);
 }
};
// --- Creates the menu object
window.addToOnLoad(__createMenu);
function __createMenu(){
 NW.menu = new MAmenu(__initializeMenu);
}
// --- Menu items are defined here
function __initializeMenu(){
 NW.menu.add(new MAmenuItem("New Order", "Create ne w order for this customers",
"javascript:NW.createNewOrder();"))
}
//-->
</SCRIPT>
<!-- #INCLUDE VIRTUAL="/Northwind/WAMLibrary/WAMEnd .asp" -->

The variable customers is an instance of the WAMStandardGUI object for the list Customers. The setLink method turns
the column CompanyName into a link column and associates javascript code (NW.setCurrentRow(this);
NW.menu.open(event);) to the event “click” of that link.

5.4.7.2 How to build lists referring tables from ex ternal DBS

Suppose that you have a WAM application based on database A and you want to list records from a table Tb in database
B. How to do that?

· In database A, create a table (let’s call it table Ta) with the same number of columns that compose the primary
key of table Tb from database B. The columns don’t need to have the same names, but must be of the same
data type.

Declarativa WAM – The Manual 108

 Copyright Declarativa 2001-2009

· In database A, create a view (V) referring the primary key columns and all the columns you want to show from
table Tb, with an outer join to table Ta, to show all records from table Tb. All the Tb columns will be
considered by WAM as expressions since they don’t belong to the base table, so they cannot be edited.

· In the WAMmodel, create a WAMlist record to the view V, which will show the records from table Tb.

Although we’ve previously mentioned that the Tb columns cannot be edited, there’s a way you can use to
workaround that situation. For that you need to create the table Ta as a copy of table Tb (only the schema, not the
data). Having this implemented you only need to make the view V editable. You can see how to do that in the (***
future!) section “How to make a view editable” (*** procurar no meu email!!!!).

5.4.7.3 Allowing multiple selection

Sometimes it's useful to allow the user to select a subset of the visible list items, by clicking. To insert the multiple
selection option we need to create a customized list ASP, and insert in it something like:

gui.list.setMultipleRowSelection(true);

Here’s an example:

*** show example of stored procedure processing selected items

5.4.7.4 Invoking row callers from a list

In order to improve usability, it is possible to allow the user to invoke row callers from a list, without opening the row
page. Row callers may be accessible from a list by the button (right next to the “magnifying glass”), which produces
a menu containing the row callers available.

To access a row caller from a list, we need to create a customized list. Here is an example:

Declarativa WAM – The Manual 109

 Copyright Declarativa 2001-2009

Row callers must be explicitly added as shown above28.

5.4.8 Other list objects

5.4.8.1 WAMListColumn

Used inside a list to support list columns, and so a collection is kept in WAMList . Each column is generated according to
its data type and presentation (align, width, etc) and can have a sorting order defined by the user. An aggregate value
can appear at the bottom, cf. 4.1.5.

List columns can have specific HTML style information, by adding styles in the application Cascading Style Sheets, eg
in /css/WAMcss.win.css . The style should be named with "css" + OWNER + BASE_TABLE_OR_VIEW +
COLUMN_NAME, for example the following makes column description in list dbo.workDone use word wrap:

 COL.cssdboworkDonedescription{
 width: auto;
 }

(See WAMList.asp)

5.4.8.1.1 How to prepare a list (defining default columns for users)

The columns that appear in a list for each user can be easily configured, following the steps below:
· access the list you want to configure and add/remove the desired columns using the popup menu
· you can set your list preferences to be used as default by the new users that will access that list

exec WAMSetDefaultPreferences
 @user=’dbo’, @listShema=’dbo’, @listName=’Orders’ , @user_model='YOUR_ACCOUNT_NAME'

If you want to refresh the list preferences for all users, before executing the above you need to delete those preferences:
delete from WAM_LIST_COLUMN where table_list_schema = ‘dbo’ and table_list_name = ‘Orders’
delete from WAM_LIST where table_schema ‘dbo’ = and table_name = ‘Orders’

28 Some row callers may have JavaScript dependencies (e.g., interface objects), therefore WAM can not assume that all
row callers are callable from the list page.

Declarativa WAM – The Manual 110

 Copyright Declarativa 2001-2009

5.4.8.2 WAMListCriterion (search filter)

(See WAMCriterion.asp)

For each list in the application the user can define search criteria for filtering results, implemented as restricted SQL
WHERE clause fragments.

Search filters are supported by this object that handles a collection of search filters for each list, created by the current
user in the application. When viewing a list the user can edit the current search filter or create a new one, naming it,
applying it to the list, or else removing it from the collection. When creating a new search filter the columns that appear
as default are those ones that belong to list’s edit table and are visible to the user, but the user can add more columns
(only) from the list edit table.

For each column in the search filter there is a menu accessible to the user to help him define the correspondent
restriction.
List search filters know about tree node fields (the primary keys of tree tables,). Whenever such a field is added to the
filter, an additional operator is available: "_", denoting "under this node".
Lists whose filters include "under a tree node" sub conditions do an extra short SELECT first, to fetch the left/right
values for the node, and then add a "node_key BETWEEN left AND right" condition to the WHERE clause of the list
SELECT; for this purpose WAM adds a join condition with the tree table to the SELECT statement.

5.4.8.2.1 Conditions involving the current user

The constant "me" ("eu" in Portuguese) denotes (for SQL Server) SUSER_SNAME(), the currently authenticated user
account.

5.4.8.2.2 Relative time search filter conditions

 List search criteria can have time interval conditions relative to "now" in a field, by using the syntax operator, value
and unit;

· unit can be: year, quarter, month, day, dayofyear, week, minute, second, millisecond. It suffices to write the
initial letters of the unit

· operator can be any of the relational operators: >, <, >=, …, etc

· value must be an integer

Example: "-2month … -1month" means (this date field value) is in the interval between two and one months ago from
today

Search filters can also use two constants which can be useful to specify "current week" intervals: lastsaturday and
nextfriday , which denote respectively 0h00 of the previous saturday, and 24:00 of the next friday. For example, a
"current week" filter can be defined with lastsaturday...nextfriday.

Finally, there's also the constant 'today', denoting the current date/time.

5.4.8.3 WAMEmbeddedDetailList

There are situations where you want to draw a list embedded in a row, to show records from a detail table related to a
row’s base table record; that’s the purpose of WAMEmbeddedDetailList . WAMEmbeddedDetailList automatically filters
records from the detail table using the FK that connects the two tables (or views).

This is a particular case of WAMList with the same functionality; the difference is that instead of being based on a
table/view, a WAMEmbeddedDetailList is based in a FK - when the detail table is directly connected to the row’s base
table - or in a FK path - when more than one FK is needed to connect the two tables or views. It is always connected to
a single row.

(See WAMList.asp)

Declarativa WAM – The Manual 111

 Copyright Declarativa 2001-2009

5.4.8.4 WAMStandaloneDetailList

Similarly to WAMEmbeddedDetailList , WAMStandaloneDetailList is also a particular case for a WAMList without
loosing functionality, and it’s also based on a FK or FK path. Instead of a list embedded in a row, this object generates a
standalone detail list, in other words, a list for the detail table and a lookup to the master table to provide context.
Typically access to these detail lists is made through buttons drawn in a master table (or view) row.

(See WAMList.asp)

5.4.9 Other objects

5.4.9.1 WAMTableGroup

WAMTableGroup generates an HTML table with buttons and fast entry points (Finders) to the lists for the tables
contained in a given group. If no group is specified in its constructor, WAMTableGroup generates tables for all the
groups specified in WAM_TABLE_GROUP table, and an HTML table with all remaining tables that doesn’t belong to
any group. This object is useful for application entry pages.

(See group\WAMTableGroup.asp)

5.4.9.2 WAMListGroup

WAMListGroup generates (just) buttons to access lists within a group, if a group name is specified, or all lists in the
application, if no group is specified. Similar to WAMTableGroup without the Finders.

(See group\WAMListGroup.asp)

5.4.9.3 WAMFinder

WAMFinder creates, for a given table and a set of columns ordered by inquiry importance, a fast entry point - search - to
access a list or a row, depending on the number of results it finds for that search. Successive SELECT statements are
executed, looking for the value typed by the user in each column, considering only columns with compatible type
(numbers for a number, strings for a string).

Creating a WAMFinder using its Javascript constructor ignores the information in WAM_FINDER (see 4.1.14) for that
finder.

See 2.5.1.

(See Finder\WAMFinder.asp)

5.4.9.4 WAMFinderGroup

WAMFinderGroup creates, for a given table group, WAMFinders for the 3 most “interesting" tables in the group,
considering only the primary key column (*** and only the first one if the key as more than one, right?). The most
“interesting” tables are those with more masters.

Records in WAM_FINDER (see 4.1.14) can add finders to the set determined by the heuristic; they also determine
which columns (other than the primary key default above) are considered.

Within the context of WAM's user customizable entry page (default.asp, see 5.1.1.1), the precise finder set to appear is
determined by the user.

(See Finder\WAMFinder.asp)

5.4.9.5 WAMTree
WAMTree generates a web page fragment, based in a tree table, with that tree in expandable outline form. Clicking a
tree node pops up a menu with all (non-embedded) detail lists defined in the WAMmodel that have that tree table as

Declarativa WAM – The Manual 112

 Copyright Declarativa 2001-2009

master. By choosing a menu option the user can view a detail list with records “under <clicked node >”. “Under query”
defines a BETWEEN query sub term, encoding the tree hierarchy based on the left/right keys defined in the table tree.

KNOWN ISSUES in the current version:
· There's what we consider a buglet on the tree: when expanding a node, any previously opened detail lists will

be closed.
· Tree node menu items (that navigate to detail lists) are never disabled
· The tree title is currently obtained from the WAM_PRESENTATION for type LIST; we could introduce a new

type 'TREE' so that a list and tree can have different titles, but this might be overkill.
· Specifying a nonexistent tree node in a search filter causes the list to display with zero tuples, but no error

message.
· In lists and search filter pages, the add field menus displays the 4 tree key fields in tree tables, in addition to

the tree node field.

5.4.9.6 WAMDialog

WAMDialog allows the developer to implement a client dialog box with a window title, message title and body (which
can be composed by multiple lines), and buttons. The dialog box generated has a predefined size (width=300px;
height=300px) that can be changed .

The dialog box can be invoked in either of the three following forms:

- Alert: A dialog box with an alert message and an ok button that waits for the user to click the button to close the
window.

- Show: A dialog box with a message and a set of buttons, defined by the developer, that waits for the user to click one
of the buttons, and returns a value indicating which button the user clicked or undefined if the user closes the window.

- Prompt: A dialog box that prompts the user with a message, an input field and two buttons: OK and Cancel. It returns
the value the user entered in the input field, when the user chooses OK button, null if the user chooses the Cancel button
or undefined if he closes the window. The developer can define a value to appear has default in the input field.

The following lines must be included in pages that refer WAMDialog object (unless HTML.drawBodyEnd method is
invoked, as happens in any page containing a WAM list or row):

<script LANGUAGE='JavaScript' SRC='/my_Application/ WAMLibrary/Dialog/WAMDialog.js'>
</script>
<script LANGUAGE='JavaScript' SRC='/my_Application/ WAMLibrary/JScriptFuncs.js'>
</script>

Implementing an “alert dialog”
var objDialog = new WAMDialog("window title", "Mess age title");
//Composing the message
objDialog.addLineBr("Line 1 with a breakspace");
objDialog.addEmptyLine();
objDialog.addLine("Last Line for the message");
//Changing dialog box width and height
objDialog.setWidth("220px");
objDialog.setHeight("200px");
objDialog.alert();

Implementing a “show dialog”
var objDialog = new WAMDialog("window title", "Mess age title", "Message body");
//adding buttons to show in the dialog
objDialog.addButton(new WAMButton("button1 caption"));
objDialog.addButton(new WAMButton("button2 caption"));
objDialog.addButton(new WAMButton("button3 caption"));
//getting button selected
var option = objDialog.show();
switch (option+””){
 case "undefined":
 //no button was clicked

Declarativa WAM – The Manual 113

 Copyright Declarativa 2001-2009

 break;
 case "button1 caption":
 //button1 was clicked
 break;
 case "button2 caption":
 //button2 was clicked
 break;
 case "button3 caption":
 //button3 was clicked
 break;
}

Implementing a “prompt dialog”
var objDialog = new WAMDialog("window title", "Mess age title", "Message for the input field");
//prompts a message with a default value in the inp ut field
var data = objDialog.prompt("default value for the input field");

5.4.9.7 The WAMAPI object

WAMAPI aggregates several global utility objects, created when the page starts executing client code:

· Page. Includes methods that simplify the handling of values received by the ASP from URL query string or HTML
form variables. It also contains relevant information about the web application mainly used for writing URLs.
(See WAMMisc.asp)

· HTML. Includes methods to write html code blocks that must be included in every ASP page that uses WAM objects;
it's also a preliminary step for abstracting WAM from HTML

· AppConn. This object handles a connection to the database with the User connection string, allowing the execution
of SQL statements, either returning a RecordSet (executeRR) or not (execute). Essencially it's a wrapper for an
ADO Connection object, adding WAM-specific error handling.
(See DBConnect.asp)

· WAMConn. Same as AppCon, but for the WAM connection string (cf. 5.5)

· Error (see 6.1.1)

· User - Keeps the information about user that is logged in (authenticated by Windows) the application.
Through this object the developer can get the name – in applications without IIS authentication the name returned
is “Anonymous”- and preferred language(s); it can also draw the user photo image (with
WAMAPI.User.drawPhoto()), if it is placed in the “images/users/” directory, under the root directory for the
application, with the file name “user_name.gif”.

5.4.10 How to customize the default entry page

Note: as an alternative to the following type of customization, consider simply relying on user-driven personalization of
the entry page, see5.1.1.1

The simplest way to build a custom version of /default.asp is to copy the WAM default.asp page from
YourApplication/WAMLibrary/Interface to the YourApplication root directory. Then, you need to edit the include
directives (change from FILE to VIRTUAL, adjusting paths, just as when customizing rows and lists, see 5.4.1. You
now have a new application default entry page.

For example, to add a new WAMFinder (cf. 5.4.9.3) to the Customers table in the “Sales” group in the Northwind
application you need to add the following line of JavaScript after creating the groupSet object (and before it is drawn!):

var F = new WAMFinder('dbo.Customers', ['CustomerID ', 'CompanyName'], false);
groupSet.items.Sales.finders.add(F);

The second argument of the WAMFinder constructor is an array specifying the columns to search (in order).

To delete/hide an undesirable WAMFinder, just remove it from the finders array of its table group, for example:
delete groupSet.items.Sales.finders.items['dbo.Orde rs'];

Declarativa WAM – The Manual 114

 Copyright Declarativa 2001-2009

5.5 Global WAM variables: the global.asa file

WAM requires the ASP global.asa file to initialize some application variables, by invoking the functions above, and
optionally others.

· WAM.setWAMConnectionString(connectionString) – connection string (as documented in the ADO
Connection object) for an SQL Server authenticated login, whose SQL permissions include the "System
Administrators" role; this is used by generic WAM code

· WAM.setAppConnectionString(connectionString) – user connection string, for either a SQL Server or
Windows authenticated login; this is used for all user interaction with the database

· WAM.setAppVersion(version) – an application name, that will appear as title in WAM-generated pages

· WAM.setDefaultLanguage(language) – a default language, determining the language if the browser has no
language preference

· WAM.setDefaultDatabaseSchema(schema) – a default database schema

· WAM.setDecorType(type) – the navigational control decoration type, either 'IMG' to use GIF buttons or
anything else to use text links with a WAM font (in order to optimize page loading in the browser)

· WAM.setAppInfo(info) – an application footer note

· WAM.setListPageSize(size) – number of records, by page, to show in lists

· WAM.setCache(flag) – a boolean that indicates, if true, that the application caches WAM Model information,
if false, the application doesn’t cache information

· WAM.setCloseOnSave(flag) – a boolean that indicates, if true, that rows are closed after its data is saved by
the user in database; otherwise rows remain opened.

The following functions can be called from Application_OnStart and affect lists (see WAMList object, 5.4.6):

· WAM.setMenuDetailNavigation(true);

· WAM.setRecordCountVisible(true);

· WAM.setListDistinctRowSet(true);

· WAM.setListToMasterNavigation(true);

· WAM.setAllowListFilterSharing(true)

The following functions can be called from Application_OnStart and affect the list and row columns of types wamemail
or wamfax resp.:

· WAM.setWAMEmailBCC(EmailAddressForBCC) – an email address to be placed in BCC email field when
the user clicks the email link, in wamemail columns. This can be used for example in conjunction with an
archiving agent

· WAM.setWAMFaxGateway (EmailAddessForFaxGateway) – an email address for the fax gateway to be used
when the user clicks the fax link, in wamfax columns; the mailto: link is setup for “FAX_NUMBER
<EmailAddessForFaxGateway >. This allows automatic setup of the header for an email message to a fax
gateway such as GFI’s (http://www.gfi.com) FaxMaker

Here's a typical global.asa, catching the ASP Application_OnStart event and invoking WAM's initialization functions:

<!-- #INCLUDE VIRTUAL="/Pubs/WAMLibrary/WAMAppGloba l.asa.asp" -->
<SCRIPT LANGUAGE="JavaScript" RUNAT="Server">
function Application_OnStart(){
 // WAM account in SQL Server:
 WAM.setWAMConnectionString("Provider=SQLOLEDB.1 ;User ID=WAMaccount;PASSWORD=WAMpassword;Initial
Catalog=MyDB;Data Source=MyServer;");
 // User account, in this example delegating to Windows's authentication

Declarativa WAM – The Manual 115

 Copyright Declarativa 2001-2009

 WAM.setAppConnectionString("Provider=SQLOLEDB.1 ;Integrated Security=SSPI;Initial
Catalog=MyDB;Data Source=MyServer;");
 WAM.setAppVersion("MyApp");
 WAM.setDefaultLanguage("en");
 WAM.setDefaulSchema("dbo");
 WAM.setDecorType("IMG");
 WAM.setAppInfo("Some footnote");
 WAM.setListPageSize(30);
 WAM.setMenuDetailNavigation(true);
 WAM.setRecordCountVisible(true);
 WAM.setListDistinctRowSet(true);
}
</SCRIPT>

The following two functions set global formatting for all numeric and date fields; defaults are day-month-year and 999
999.00:

· WAM.setDateFormat("dmy", "-");
· WAM.setMoneyFormat(".", 2, " ");

The following function changes the default window autosizing strategy, forcing all windows to maximize when they
open:

· WAM.setWindowMaximized(false);

The following makes calendar controls appear near datetime, WAMDate and WAMTime fields:
· WAM.setCalendar(true);

The following configures the functions required for wamcustomresource columns:
WAM.setCustomResource(fileSpecs, details) – fileSpecs is a path to the file that containing the functions
to be used when WAM manages the file. details is an object providing access to those functions. See 4.4.8

The following provides information necessary for GoogleMaps column fields (see 4.4.11):
WAM.setGoogleMapsAPIKey(googleKey, defaultLatitude, defaultLongitude,
defaultZoom)

The following forbids access to all users, displaying a warning; can be used during application maintenance:
Application("App_HavingAMassage") = true; // false would make the app available

5.6 Global WAM styles and GIFs

WAM uses a set of CSSs and GIF icons in the generated HTML fragments, which can be redefined for an application.

5.6.1 GIF icons

The following are in WAMLibrary/images:
Icon Context Description
menu-more.gif LIST used on menu to indicate a sub-menu
no-image.gif ROW image not available
uc.gif at page bottoms under construction
nav-firstpage.gif LIST goto first page
nav-nextpage.gif LIST goto next page
nav-previouspage.gif LIST goto previous page
nav-lastpage.gif LIST goto last page
nav-firstpage-d.gif, nav-nextpage-d.gif,
nav-previouspage-d.gif, nav-lastpage-d.gif

LIST same as previous 3, but for when the buttons are
disabled

move-column-left.gif LIST move column one position to left
move-column-right.gif LIST move column one position to right
order-asc.gif LIST sort list by ... in ascending order
order-desc.gif LIST sort list by ... in descending order
order-asc-p.gif LIST list column is sorted ascending
order-desc-p.gif LIST list column is sorted descending
remove-column.gif LIST remove column from list
add-column.gif LIST/CRITERION open menu to add a new column
row-edit.gif LIST edit record
row-delete.gif LIST delete record

Declarativa WAM – The Manual 116

 Copyright Declarativa 2001-2009

arrow-top-right.gif ROW lookup - find a record
arrow-top-left.gif LIST lookup/zoom - return a record
export.gif LIST export list
father.gif ROW open father's row (wamhierarchical columns)
descendants.gif ROW open descendants' list (wamhierarchical columns)
bit-checked.gif LIST checkbox checked, for bit columns
bit-unchecked.gif LIST checkbox unchecked, for bit columns
criterion-remove-column.gif CRITERION remove column from search filter

5.6.2 CSS styles

Styles are defined in the WAMLibrary, which contains several CSS files. Additional (app-dependent) files can be
placed in /css (or css directory at the application root), using the same names below, allowing styles to be added or
redefined.

A style sheet is used for Windows browsers (WAMLibrary/WAMcss.win.css.txt) , and another for Macintosh browsers
(WAMLibrary/WAMcss.mac.css.txt):
Style Purpose
.cssWAMstandardButton Buttons used in the application
.cssWAMstandardEdit Row INPUT elements
TEXTAREA.cssWAMstandardEditTEXTAREA Row TEXTAREA elements
SELECT.cssWAMstandardEdit Row SELECT (popup) elements
A All links used in the application
A.cssWAMzoom Links to open a row in "zoom" mode (lookup)
A.cssWAMdecor Link that uses font decoration (decoration types: GIF, FONT)
.cssWAMcritDescription SQL WHERE clause that appears in list when using a search

filter
.cssWAMcritPopup List search filter's popup (HTML SELECT element)
TD.cssWAMwinTitle Page header
SPAN.cssWAMwinTitleTop Application's label
SPAN.cssWAMwinTitleBottom Row or list name
TD.cssWAMlistDark Top and bottom of the list
TR.cssWAMlistLight Even list lines
TR.cssWAMlistSelected List's selected line (tables with wamhierarchical columns)
SPAN.cssWAMfinderSearch Finder's advanced search link
TD Global TD
BODY BODY
TD.cssWAMlistCell List’s cell
TD.cssWAMlistRangeBar Segment for N value (wam_range columns)
TABLE.cssWAMlistRangeBar Segment for MaxN-N value (wam_range columns)

There's also a way to associate styles to specific list columns, see WAMListColumn object.

5.7 WAM cache and its freshness vs. the database

WAM has a meta-information cache, to minimize access to the WAMmodel in the database. In older versions it was
stored in IIS Session variables; it is now implemented in IIS Application variables. The current implementation
therefore allows each user's cache to persist between sessions, speeding up (comparatively to the old Session approach)
the first visualization of most application pages in all but the first day.

Therefore when developing an application and changing its WAMModel or database structure, it is usually necessary to
restart IIS to see the effect of the changes in the application, because WAM caches some WAMmodel information in
application variables. For this either (a) UNLOAD the application, to force a cleaning up of all user caches (with the IIS
Admin application open up the properties for the application)... or (b) simply save global.asa , which makes IIS
UNLOAD and restart the application

WAMAdmin is aware of this, and so it disables the current user's cache automatically when editing; it can also disable or
enable (all) other user caches (referred as "Global WAM Cache").

For other scenarios WAM provides an URL so the user/developer can clean his own cache without restarting IIS. To
close a session the developer should invoke the following URL:

Declarativa WAM – The Manual 117

 Copyright Declarativa 2001-2009

ApplicationRoot/WAMLibrary/RefreshWAMmodel.asp. A user shortcut is also available: by clicking the user name
appearing in the footer (in the application entry page) the session is terminated.

5.8 Custom user authentication

So far it has been assumed that the aplication user is authenticated by either the (web server running on the) Windows
operating system and/or the associated data server. But in many situations it is more convenient to authenticate using
some application-specific approach - for example the application may prefer to manage (potentially unlimited) user
accounts in its own database.

The WAM login feature addresses this need. All you need to provide is an authentication (ASP) script fragment, placed
somewhere in the web structure, and declare it on Application_OnStart().

 WAMsetLoginValidationPage("authenticate.asp"); // placed at the application root directory

The ASP fragment should validate the user/password, which it must get from two POSTed form fields, and on success
set two Session variables, WAM_UserLoggedIn (boolean) and WAM_UserNameLoggedIn (username). When an user
attempts to access any WAM-based page (e.g. an ASP including the WAMObjects.asp file) he/she will be redirected to
a standard login page:

 (“JOCLAD” above being the name of an existing application). After the user submits the name/password the
authentication fragment (‘/authenticate.asp’ above) is executed with a Server.Execute command; if it sets
Session("WAM_UserLoggedIn") to true , the user is redirected to his original (WAM application) URL request. If not
an error dialog appears.

Here’s an example for an authentication script fragment:
<%@ Language='JavaScript' %>
<%
if(Request.Form.Count>0&&
 (Request.Form("userName")+"")==’aUser’&&
 (Request.Form("password")+"")==’aPassword’) // a r eal app might compare to values in its database
 {
 Session("WAM_UserLoggedIn") = true;
 Session("WAM_UserNameLoggedIn") = "aUser";
 }
%>

So after login success the validation script must update these WAM Session variables: WAM_UserLoggedIn and
WAM_User NameLoggedIn. The possible values for the WAM_UserLoggetIn session variable are either true or false.
WAM_UserNameLoggedIn should have the name of the user logged in.

In order to obtain the user identity on the data server side (e.g. in a VIEW, as when defining data-dependent user access
policies) the following user functions are available:

· dbo.GetUser() , for SQL Server

· informix.GetUser() , for Informix IDS

Declarativa WAM – The Manual 118

 Copyright Declarativa 2001-2009

5.9 WAP support – the WAM Mobile interface

WAM includes a preliminary version of a WAP interface, which automatically offers any WAM application an
alternative mobile phone interface, based on the same WAMmodel behind WAM applications for web browsers.

The WAP interface for an application is invoked through the URL http://APPLICATION_URL/WAMLibrary/WAP/
For this to be active WAP MIME types must be defined in the web server; this is documented in the WAM Installer.

Most WAM aspects such as a multi-lingual interface, rows (single record forms), field validation and other features are
implemented based on the same WAMmodel used in applications for browsers, except for the following current
limitations: no inverse lookups; no immediate field validation due to the lack of WML events vis a vis web browsers;
no ability to create list search filters (users get to reuse filters created through a web browser); SQL user permissions
and table constraints are not visually reflected in the interface, they will simply originate database permission errors
later.

The WAM Mobile interface is compatible with Wireless Application Protocol 1.2 or later devices.

Declarativa WAM – The Manual 119

 Copyright Declarativa 2001-2009

6 Error and warning Handling

WAM includes the ability to report parameterized multilingual error messages (either database server, web server or
web client raised) and (except for database server errors) to focus on a relevant GUI object. Each error situation is
defined in the WAMmodel, as a record in WAM_PRESENTATION with type=ERROR. The 'name' is used to raise the
error, and 'caption' contains the error message, which may include value placeholders to enrich the message with
context.

An analogous mechanism exists for warning the user before an operation concludes, rolling it back if the user does not
confirm it.

6.1 Raising and handling errors in the SQL layer

To handle errors SQL Server has the @@ERROR system function, that can be executed after each Transact-SQL
statement to test if the statement generated an error. The @@ERROR function returns 0 if the statement executed with
success or the error number if it failed.

WAM adds two stored procedures to improve this mechanism: SetError and SetMacro. Working together with
@@ERROR this allows the user to return more information about the error that occurred inside a trigger or stored
procedure to the ASP.

SetError raises an error indicating the “error name” in WAM_PRESENTATION. SetMacro indicates a placeholder and
its correspondent value for the last error raised using SetError, so that each placeholder in the error description can be
replaced by a parametrized value. Here's an example:

if SomeErrorCondition
begin
 exec SetError 'MY_SQL_ERROR_NAME'
 exec SetMacro 'X', SomeSQLExpressionToEnrichTheEr rorMessage
 exec SetMacro 'Y', AnotherSQLExpression
end

All WAM objects in the ASP layer handle SQL layer errors automaticaly, using the facilities in the next section.

6.1.1 Raising and handling warnings in the SQL layer

Similar to the above error handling procedures, the above cause a modal dialog box to appear:

 - exec dbo.SetWarning '_WARNING_CODE_HERE_'

 - exec dbo.SetWMacro 'M', '_MACRO_VALUE_HERE_'

Several warnings can be shown along the same execution path; WAM keeps track of the user confirmations; the SQL
code is executed each time, but is only committed when all warnings are confirmed (ignored) by the user.

6.2 Raising and handling errors in the ASP (web ser ver) layer

WAM includes the object WAMError to help the programmer dealing with errors inside an ASP. You can use this
object to raise your own errors inside an ASP, or to handle errors returned by the connection after executing a SQL
statement - either from the engine or from raising by WAM's own SetError and SetMacro stored procedures.

As in SQL layer handling, errors are assumed to have a correspondent entry in table WAM_PRESENTATION, and
optionally placeholders to enrich the message. So in order to show errors with the correct message it is necessary to
fetch it from database.

Here's a typical code snippet example to handle database server errors:

// Server-side JavaSript:
try{

Declarativa WAM – The Manual 120

 Copyright Declarativa 2001-2009

 WAMAPI.AppConn.execute(MySQLstatement);
}
catch(e){
 //Collect errors generated in stored procedure
 WAMAPI.Error.clear(); // clear the error collecti on
 WAMAPI.Error.catchErrors(WAMAPI.AppConn); // fetc h messages and context values from db
}
…
if (WAMAPI.Error.hasErrors()) {
 // might do something if there were errors in the current collection
}

And here's a code snippet to raise an error in the ASP:

// Server-side JavaSript:
if (SomeErrorCondition){
 WAMAPI.Error.SetError('MY_ASP_ERROR_NAME')
 WAMAPI.Error.SetMacro('A', 'Some meaningful value for message placeholder @A')
 WAMAPI.Error.SetFocusTo('SomeHTMLelement'); // st ring with client JavaScript expression
 WAMAPI.Error.catchErrors(); // fetch messages and context values from db
}

In both cases errors caught in the web server layer are automatically displayed in a modal dialog, when the page is
loaded in the web client browser.

(See WAMError.asp for more information)

6.3 Raising and handling errors in the web client l ayer

Similarly to the web server layer there’s also an error object, always present in pages generated with WAM. With this
you can raise errors, having their messages and placeholder values fetched from WAM_PRESENTATION. Here's an
example:

// Client(browser)-side JavaSript:
if (SomeErrorCondition){
 Error.SetError('MY_BROWSER_ERROR_NAME')
 Error.SetMacro('A', 'Some meaningful value for me ssage placeholder @A')
 Error.SetFocusTo(SomeHTMLElement) // such as a fo rm field
 Error.catchErrors(); // fetch messages and contex t values from db
}

An IFRAME is used to access the database within catchErrors

 (See WAMError.js for more information)

Declarativa WAM – The Manual 121

 Copyright Declarativa 2001-2009

7 WAMAdmin

WAM provides a WAMmodel administration utility, built with WAM itself:

7.1 Browser-based WAMmodel editing

Edition of any WAM tables can be done with an SQL client, such as Microsoft's Enterprise Manager, Visual Interdev or
other tools.

But there are two direct WAM-based ways to perform editing:

- Application lists and search filters allow normal (authorized) users to edit the related WAMmodel

- WAMAdmin

WAMAdmin is a WAM-based (hence browser based) front-end to all WAMmodel tables, and is installed together with
the WAMLibrary; it is invoked with the URL ApplicationRoot/WamLibrary/Admin . In production environments the
Admin directory should have access limited to administrators/developers.

By setting the “WAMmodel edit mode” to ON (bottom left of screen), the whole application transmutes into “edit
mode”, displaying an “under construction sign” and showing orange links to relevant WAMmodel records, and
allowing interactive picking of lookup columns. This mode is turned on by default when the WAMAdmin entry page is
displayed the first time, and can be turned off by toggling “WAMmodel edit mode”,

For example the following is a Northwind “Order” record shown in WAMAdmin edit mode while the developer is
choosing additional related columns to add to WAM_LOOKUP_COLUMN:

Declarativa WAM – The Manual 122

 Copyright Declarativa 2001-2009

Following the orange links opens the WAMmodel tuple for edition with WAMAdmin; for example, to change the
“Freight” caption the developer would follow the “WP” link and change the (meta) data in the following page:

Declarativa WAM – The Manual 123

 Copyright Declarativa 2001-2009

The following WAMmodel edition links are made available in edit mode:

Link Purpose

WP Edit (possibly creating) WAM_PRESENTATION record

WRC Edit (possibly creating) WAM_ROW_COLUMN record

WLKC Edit WAM_LOOKUP_COLUMN record.

Add Lookup Column Add a new WAM_LOOKUP_COLUMN defining a lookup on the present row, using a
hierarchical menu similar to that appearing during end user list join building

WL Edit WAM_LIST record

Set default Make the current list configuration for the current user define what the ‘dbo’ user list should
look like (and hence what all users will get), in terms of WAM_LIST_COLUMNs and
WAM_CRITERION. The rationale is for the developer to configure the list as an end user
would, and then click this link.

WPC Edit WAM_PROCEDURE_CALL record

In addition to lists and rows, WAM table group objects (e.g. in the default.asp page) also feature some WAMmodel
edition links.

Declarativa WAM – The Manual 124

 Copyright Declarativa 2001-2009

7.2 WAM API Reference

The WAM objects, both client and server, are documented in the WAM API Reference, automatically generated
invoking URL ApplicationRoot/WamLibrary/Admin/api.asp, or following the WAM API link in the WAMAdmin
entry page. For each object the following information is supplied: constructor, methods, properties and collections.

7.3 Developer Documentation

WAM provides a tool, intended to be used by developers, which shows, in a form of a HTML document, an
enumeration of the lists and rows created for each table or view used by the application, and a brief description for each
one (see column comments in the WAM_PRESENTATION table). The document also represents the relation between
rows and lists as well as their properties, such as columns, captions, etc.

The document can be generated invoking the following URL: ApplicationRoot/WamLibrary/Admin/documenter.asp,
or following the Documenter link in the WAMAdmin entry page. Adding the parameter ?wdschema=X restricts
documentation to objects in SQSL schema X.

7.4 Database structure Information

Sometimes it may be convenient to introspect the database structure through the browser, for example when a direct
connection to the database server is not possible. The following page (partially shown below) displays all tables,
columns, foreign keys and stored procedures:

It can can be generated invoking the following URL: ApplicationRoot/WamLibrary/Admin/dbinfo.asp, or following
the Database Info link in the WAMAdmin entry page.

7.5 WAMmodel consistency with database structure

WAMmodel tables refer database objects, such as tables, views, foreign key paths, stored procedures, etc. In order for
the WAMmodel to be correct, it is necessary that all referred objects exist.

Declarativa WAM – The Manual 125

 Copyright Declarativa 2001-2009

WAMmodel consistency triggers, defined in the WAMmodel tables, normally enforce this. If for any reason it is
necessary to disable these triggers (say because you’re doing some bulk loading or multi-step processing on
WAMmodel tables), disable them with the “Set WAMmodel consistency OFF”, and re-enable them later with “Set
WAM consistency ON”, on WAMAdmin’s entry page.

Independently of the incremental consistency checking on WAMmodel’s side by its triggers being active or not, on the
other side the SQL database schema may change unannounced.

To deal with all these possibilities WAMAdmin includes a WAMmodel consistency checker, callable by following the
“Wammodel Consistency” link in the WAMAdmin entry page. For example, the following is the result after a record in
WAM_PRESENTATION for the Northwind example was changed erroneously to “Ordens” instead of “Orders”:

Each error message provides a link to the offending WAMmodel record. Following the first link above leads the
developer to the following WAMAdmin page, to fix the problem:

Declarativa WAM – The Manual 126

 Copyright Declarativa 2001-2009

7.6 Database Compare (dbCompare)

WAMAdmin provides “database compare", a tool to simplify the synchronization between two databases. This tool,
intended to be used by developers, compares WAMmodel and database schemas, and allows the developer to make
specific changes from one side to the other.

7.7 Available databases (dbInspector)

WAMAdmin provides “available databases”, a tool to know all databases present on a server, as well as WAM version
and application name.

By default, this tool lists all databases present in the current application server, but other servers can be accessed.

Declarativa WAM – The Manual 127

 Copyright Declarativa 2001-2009

7.8 *** Other WAMAdmin features

· Navigation graph generation (obsolete)

· Export/Import

· DB dependencies: shows ASPs with database object dependencies in their source code

· Global cache control

Declarativa WAM – The Manual 128

 Copyright Declarativa 2001-2009

8 WAM installation and application setup

Two major steps are involved: setting up the WAMmodel on the database and configuring the web server application.
The following assumes familiarity with the relevant Microsoft tools.

8.1 Using the installer

Just double-click the setup.wsf file.

At the end you should follow the suggestion and review the WAMLibrary/Admin file permissions, to forbid arbitrary
WAMmodel edition by users through WAMAdmin. Add WAP MIME types if WAP access is desired.

8.2 Manual installation

8.2.1 WAMmodel setup

To create the WAMmodel execute two scripts, WAMCascader.sql that creates stored procedures and tables for trigger
cascading, and WAMmodel.sql that creates tables and stored procedures for the WAMmodel. Afterwards create a default
WAMmodel for the database, by executing the following script sequence: fill_WAMList.sql ,
fill_WAMListColumn.sql , fill_WAMList_DetailLists.sql , fill_WAMLookupColumn.sql and
fill_WAMPresentation.sql .

Finally add some generic WAM records into tables WAM_LIST, WAM_LIST_COLUMN and
WAM_PRESENTATION, by importing the 3 .txt files (say) with the Enterprise Manager Import wizard or with Query
Analyser:

BULK INSERT WAM_PRESENTATION FROM 'MyPath\WAM_PRESENTATION.txt'

BULK INSERT WAM_LIST FROM 'MyPath\WAM_LIST.txt'

BULK INSERT WAM_LIST_COLUMN FROM 'MyPath\WAM_LIST_COLUMN.txt'

(see WAMmodel.zip)

8.2.2 Web application setup

· Create a web application in Internet Information Server (4.0 or 5.0), in a new virtual directory; you must enforce
the following properties:

 Directory > Application Settings > Configuration > App Options

 [x] Enable buffering (checked)

 [x] Enable parent paths (checked)

 Default ASP language = JavaScript

· Copy the WAMLibrary files from WAMLibrary.zip to a directory named WAMLibrary situated at the root of the
web application.

· Prepare a global.asa file (see section 5.4.10 above)

The WAM application front-end can be invoked by http://APPLICATION_URL/WAMLibrary/Interface, and the
WAMmodel administration facility by http://APPLICATION_URL/WAMLibrary/Admin.

8.2.3 Removing WAM

In order to remove all WAMmodel tables and WAM stored procedures etc. from a database, you can call

Declarativa WAM – The Manual 129

 Copyright Declarativa 2001-2009

WAMuninstall (selfdestroy)

If the argument is 1, the procedure will destroy itself too.

8.3 Browser limitations: Firefox and Safari

WAM's reference browser is Internet Explorer. Firefox and Safari are also supported, with some minor limitations:

· Selection of finder fields to be used by the finder is not available.

· Shortcut to copy URL is not available.

· Multiple selection option is not available.

Declarativa WAM – The Manual 130

 Copyright Declarativa 2001-2009

9 Misc

9.1 Hands-on workshop template

Following is a possible structure for an introductory hands-on WAM session, for half to a full day depending on the
audience's proficiency with (specially) SQL Server and ASPs. Most items refer relevant manual sections.

9.1.1 Basics

· The existing software infrastructure that WAM will add to: SQL Server, SQL Management Studio, database
restore; IIS, web sites, ASPs, global.asa, your favorite text editor

· Manual copying/installing of an existing WAM application (NorthwindC): copy folder, share as web directory
F, edit global.asa with database name and user credentials, access http://localhost/F

· WAM application user interface overview (section 2.)

· First part of section 2.8

9.1.2 Installing WAM and simple WAMmodel tweaking

· Install WAM over existing Northwind DB (3.1);

· Compare new app with NorthwindC

· Second part of 2.8

· Improving the Orders row (3.3.1, 3.3.2)

o Adding a field title, the hard way

o WAMAdmin: adding another title, disable a field, keep with next

o Grouping some elements in the row (4.1.8)

· Grouping some tables (4.1.8)

· My list is the best for all

· WAMmodel tables overview (4.1)

· A button to an external ASP (3.5.5, 5.4.6)

9.1.3 FK path wonders

· FK graphs and paths (2.9, 2.10, 2.11)

· Adding a lookup to the Orders row, the hard way (4.1.3)

· Adding lots of lookups

· To be embedded or to stand alone, that is the question (3.3.5)

· Deeper lists (3.3.4):

o Orders handled in a territory

o Customers buying stuff from a supplier

· Grouping row elements in Supplier (4.1.8)

Declarativa WAM – The Manual 131

 Copyright Declarativa 2001-2009

9.1.4 Better databases

· Back to the development process (2.8)

· Nicer error messages (3.4.4, 6.1)

o please don’t kill the customer

· Dates without time (4.4.1)

· Storing files “in” database records: wamexternalfile (4.4.7)

· Adding a CustomerType table

o A colored field (4.4.9)

o Relating it to Customers

o More lookups in Customers, Orders

· About CHECKing constraints: adding sex to Employees (3.4.2)

· WAMmodel vs. database (meta)editing

o Inconsistency problems (7.5)

o WAMAdmin reviewed

· To probe further: do your GoogleMap with wamgmlatlng (4.4.11)

9.1.5 Finally, some web application code!

� So far, WAM’s default.asp and standard.asp (5.1)

� A better entry page: adding a finder for Customers (5.4.10)

� About custom rows and lists (5.3.1, 5.4)

o The Orders row in NorthwindC (5.4.2.3)

9.2 WAM model-customization continuum and project m ethodology

As could be seen in "WAM development tour", WAM allows a balanced use of modeling and coding:

· Modeling alone allows the application to have significant GUI functionality, cf. 3.3 above

· An application with no scripting outside the database server will use the WAM-provided standard ASPs, and will
reflect improvements to the database and/or the WAMmodel, see for example "Add fields to a table" and "Add a
trigger with parameterized error message"

· ASP scripting using WAM objects should delegate as much as possible GUI generation, to make code less brittle to
database changes; see for example "Customize a row page" and "Add a browser client script"

· Scripting outside of WAM-generated pages can be invoked with WAMmodel specified links, see for example "Add
an external ASP"

There are other important aspects not shown, namely the impact of user permissions on the multiple GUI profiles,
obtained automatically by WAM at runtime.

So WAM-based development does not fall in the extreme scenarios (1) "use the model to generate the first version and
then forget it because we need to change the code!" or (2) "use an enormous model so we can always parameterize
rather than code!" Instead WAM supports a hybrid development style, fulfilling a continuum from one to the other
extreme: the model-customization continuum, made possible by exposing to the developer the GUI generation facilities
at runtime. This of course marries very well with the dynamic nature of the web's GUI.

Declarativa WAM – The Manual 132

 Copyright Declarativa 2001-2009

WAM is methodology neutral; it mainly speeds up the web GUI construction, and may be integrated into existing
project approaches. And it doesn’t introduce significant dependencies – future incarnations of the developed system
may reuse the investment in the SQL layer (database structure, user roles, triggers, …) and replace the WAMLibrary by
something else, even reusing all linguistic and other declarative information from the WAMmodel.

In our customer projects with WAM we’ve been following approximately the following project steps:

1. Team Setup

1.1. Tool and workstation configuration

1.2. MS SQL Server, Active Server Pages / JavaScript, an d Visual InterDev training

1.3. WAM training

2. Put together and discuss informal requirements repo rt

3. First database structure, including full data impor t for testing and validation

4. Development of most general web interface

4.1. Get first WAM interface (automatic)

4.2. Tune WAMmodel – table groups, captions, lists, look ups

4.3. Development of external ASPs for customized documen ts, reports etc.

4.4. Development of automatic communication templates

5. Data validations, procedural operations

5.1. Triggers and check constraints

5.2. Stored procedures

5.3. Other external ASPs (beyond documents and reports)

5.4. Conditions for automatic communication agent

6. More specific web interfaces

6.1. Definition of SQL users and roles,

6.2. Development of customized WAM web pages for more in tense or frequent user interactions

6.3. Permission and additional VIEW coding, automaticall y conditioning the web interface

6.4. Validation of the multiple interfaces

7. Pre-flight

7.1. Customer server installation: data, IIS, automatic communicator, printing agent

7.2. User demos and early testing

7.3. Full data import

7.4. Use in parallel with old system

7.5. Postmortem review, fixing

8. Production

8.1. Final data import

8.2. Running it

8.3. Basic user training and baby-sitting

8.4. Documentation

8.5. Stabilizing

The above steps mention automatic communication and (web page) printing Declarativa agents, which are currently not
part of WAM.

Declarativa WAM – The Manual 133

 Copyright Declarativa 2001-2009

9.3 Comparison with other tools

Note: This section is outdated, please check http://www.declarativa.com/wam

This section attempts to position WAM regarding other tools. For a good overview of existing related tools see
[Fraternali 99].

We're unaware of GUI generators pursuing such a close integration between their input (GUI specifications) and the
back-end database applications they serve; to our knowledge major commercial tools require human form/web page
code revision if as little as a new single field is added to the database. Most provide (development time) wizards to
generate code that can later be customized to a certain extent, but which is fragile against database schema changes.

Such is the case for example for Macromedia Cold Fusion, Oracle Forms Services and Microsoft Access. ASP-DB
[MMS 2001], a product whose purpose intersects WAM's, has the same problem, lacking any connection to the
database engine meta-model. The same applies for "single-shot" code wizards such as Microsoft Visual InterDev's

Most research in the area proposes the use of higher-level conceptual models, as basis for application generation, in
complement or preceding the relational model. Such is the case for Araneus [U.Roma 2001], Autoweb [Fraternali et al.
2001], and Strudel [AT&T 2001], see [Griffiths et al 1998] [Silva 2000] for surveys. Given our lack of resources and
focus on quickly developing practical solutions for customers it seemed preferable to embrace a pragmatic lower level
model, closer to industry practice. Although our WAMmodel defines a few tables that must be filled "by hand", its core
is simply the SQL DBMS own built-in Meta structure, always present and which may even be the output of higher level
modeling processes, independently of WAM.

The software community has lately shown concern with "cross-dependencies", practical manifestations of higher-order
concepts in the programmer's mind that are not properly captured into available programming abstractions such as
functions, objects or rules. This is one of the main motivations for both Aspect Oriented Programming [Xerox 2001]
and Intentional Programming [Microsoft 2001b]. WAM's pragmatic implementation of model-based web programming
addresses a particular class of such cross-dependencies, namely those stemming from the multi layered nature of web
program executors and the innate web structure dependencies from database models. And in fact we found thinking
similar to ours in the description of a proposed application for Intentional Programming, cf. the "Scribble" example in
[Simonyi 2001]. You can take WAM as providing a "web GUI front-end defining intention" for Transact-SQL
programmers.

9.4 ***Performance considerations

Recap expected admissible server load, refer WAMLoadBalancer.

Refer WAM_AUDIT_LOG and how to use it for performance

9.5 Help system

All WAM-generated pages provide online help.

9.5.1 User perspective

Tooltips are shown directy on the application page, whenever the mouse cursor flies over a field/column.

The help panel is available by pressing F1 or clicking the icon. In addition to navigation links and a search field, it
displays 4 main kinds of help content, exemplified next:

· Concepts ("Conceitos") necessary to understand the application

· Frequently asked questions ("Perguntas"), task-oriented

· Descriptive help about all lists in the application, as well as about each column/field on a row;

· Glossary ("Glossário")

Declarativa WAM – The Manual 134

 Copyright Declarativa 2001-2009

Declarativa WAM – The Manual 135

 Copyright Declarativa 2001-2009

Frequently Asked Questions, being the source for more pragmatic, task-oriented help, are supported with additional
information. Next is the help panel for "How to create a document", in a document management application:

In addition to the answer to the question, the user is shown precedent and subsequent questions - questions whose
answers the user should know before asking the present question, or which he may with to read, respectively. This order
among help items defines the best learning paths for users.

Further more, since a question maps into an application operation (typically the invocation of a caller button, or saving
or deleting or consulting something), the help panel tells the user how many times he has executed this operation… and
provides links to review the last 5.

(Note: this paragraph currently applies only to RegionDoc/Tabularium WAM applications) The help panel also
identifies the other user in the same organizational unit who executed the operation more times, suggesting him/her as a
source for human help on this particular application feature.

9.5.2 Developer perspective: adding help content

Descriptive help about lists, rows and columns/fields is entered in WAM_PRESENTATION (captions and tooltips,
which in adition to being shown to the user are used to generate the help panel).

But most online help material resides in WAM_HELP (see 4.1.12), which can be edited with WAMAdmin while
running the application, so all changes propagate live to users.

Declarativa WAM – The Manual 136

 Copyright Declarativa 2001-2009

The following figure shows a help ("Ajuda") item, one record in WAM_HELP:

In addition to the language (“Língua”) of the item (thus one record is needed for each language supported by the
application), the help designer specifies the type of the topic (if it is a “how to” topic, a term of glossary, a concept)
he/she wants to create.

Then name, title, group and description of the new help topic. Help topics can be split in groups (groups of FAQ’s
within the same thematic, for instance), so it is easier for users to find them. The name of the topic is an internal
expression used by developers (acting as part of the table key). The title is the question that will appear to users. The
description field is the answer.

Help items that the
user should master
before this one

SQL statement
counting number
of operations by
current user

Explanation, the
substance of the
help item; HTML
included

Declarativa WAM – The Manual 137

 Copyright Declarativa 2001-2009

'Precedents' (optionally) indicates help items whose reading by the user should precede the current one, because they
provide knowledge required to understand the current one. It's a list of Help_group/HelpItemName, separated by
semicolons.

9.5.2.1 WAM_HELP Description tags

To use (application data) examples or to refer other help items, it is necessary to insert specific tags in the “Description”
field. Here is the list of those specific tags that can be used by developers when they are writing a description for a help
item:

9.5.2.1.1 WH:ROW (<wh:row/>)

This tag is used to create a link to a row.
Use Cases:

<wh:row table="<schema.name>"/> Open an empty row

<wh:row table="<schema.name>" key="<key>(,<key>...) "/> Open a row with a specific primary key

<wh:row table="<schema.name>" defaults="<key>=<valu e>"/> WAMA Rows

Optional Attributes:

caption="<string>" String which contains the link

9.5.2.1.2 WH:LIST (<wh:list/>)

Create a link to a list.
Use Cases:

<wh:list table="<schema.table>"/> Open the defined list in table
attribute

<wh:list table="<schema.table>"
filterColumn="<schema.table.column>(,<schema.table. column>...)">
filterValue="<key>(,<key>...)"/>

Open the list table applying
the filter
filterColumn=filterValue

<wh:list fkPath="<esquema.fkPath>" key="<chave>" /> Open the detail list fkPath
which contains the key

Optional Attributes:

caption="<string>" String which contains the link

9.5.2.1.3 WH:GLOSSARY / WH:CONCEPT / WH:HOWTO (<wh:glossary/> / <wh:concept/> /
<wh:howto/>)

<wh:glossary name="<name_WAM_HELP>"/ > Link to the glossary item defined by name

The same is applied to the other two cases

Optional Attributes:

Declarativa WAM – The Manual 138

 Copyright Declarativa 2001-2009

caption="<string>" String which contains the link

9.6 Charts for lists

*** elaborate

WAM includes an external ASP with a generic charts (bidimensional business graphics) generator for lists, which based
on the current list configuration provides further configuration options to the user:

The above was generated from a list "Despesas"; the bottom right combo box shows electable columns for "independent
variable"; the top left combo show columns candidate for "dependent variables", including some simple aggregations as
above ("Soma de" - sum of).

To use it in any list simply insert a caller definition:

INSERT INTO dbo.WAM_PROCEDURE_CALL VALUES(' ', '../WAMLibrary/SystemProcedures/Charts/default.asp', 'LIST', '<list_schema>',
'<list_name>', 0, null).

Declarativa WAM – The Manual 139

 Copyright Declarativa 2001-2009

9.7 References

AbsInt, "aiSee - Graph Visualization", http://www.absint.com/aisee/, May 29, 2001

Alferes, J., Leite, J., Pereira, L., Przymusinska, H., Przymusinski, T., "Dynamic Updates of Non-Monotonic Knowledge
Bases", The Journal of Logic Programming 45(1-3): 43-70, 2000.

AT&T Labs-Research, "Strudel Web-site Management System", http://www.research.att.com/sw/tools/strudel/, May
29, 2001

Coram, T., Lee, J., "Experiences -- A Pattern Language for User Interface Design",
http://www.maplefish.com/todd/papers/experiences/Experiences.html, May 29, 2001

Fraternali, P., "Tools and Approaches for Developing Data-Intensive Web Applications: A Survey", ACM Computing
Surveys, Vol. 31, No. 3, September 1999

Fraternali et al., "Autoweb site", http://www.ing.unico.it/autoweb/, May 2001

Gamboa, T., "Towards the Development of Information Systems in Portuguese", MSc Thesis, Universidade
Portucalense, Portugal, 1998

Griffiths, T., McKirdy, J., Forrester, G., Paton, N., Kennedy, J., Barclay, P., Cooper, R., Goble, C., & Gray, P.,
"Exploiting Model-Based Techniques for User Interfaces to Databases", in Proceedings of VDB-4, Chapman & Hall,
London. pp. 21-46. 1998, http://citeseer.nj.nec.com/griffiths98exploiting.html

Lamma, E., Riguzzi, F., Pereira, L., "Strategies in Combined Learning via Logic Programs", Machine Learning 38(1/2):
63-87, January 2000

Major Micro Systems, "ASP-db, The Ultimate Web Database Tool", http://www.majormicro.com/asp-db7.html, May
29, 2001

Microsoft Corporation, "Active Server Pages",
http://windows.microsoft.com/windows2000/en/server/iis/htm/asp/iiwawelc.htm, May 29, 2001

Microsoft Corporation, "Intentional Programming", http://research.microsoft.com/ip/, May 29, 2001

Patterns Home Page, http://www.hillside.net/patterns/patterns.html, May 29, 2001

Ramanathan, S., Hodges, J, "Reverse Engineering Relational Schemas to Object-Oriented Schemas", Technical Report
MSU-960701, Mississipi State University, USA, 1996

Silva, P., " User Interface Declarative Models and Development Environments: A Survey",
http://citeseer.nj.nec.com/359639.html, June 29, 2001

Simonyi, C., "Intentional Programming", http://research.microsoft.com/ip/mar99_files/frame.htm, May 29, 2001

U. di Roma Tre, "The ARANEUS Project", http://www.dia.uniroma3.it/Araneus/, May 29, 2001

Xerox PARC, "Aspect-Oriented Programming", http://www.parc.xerox.com/csl/projects/aop/, May 29, 2001

